Advanced Search
Article Contents
Article Contents

Wet paper codes and the dual distance in steganography

Abstract Related Papers Cited by
  • In 1998 Crandall introduced a method based on coding theory to secretly embed a message in a digital support such as an image. Later, in 2005, Fridrich et al. improved this method to minimize the distortion introduced by the embedding; a process called wet paper. However, as previously emphasized in the literature, this method can fail during the embedding step. Here we find sufficient and necessary conditions to guarantee a successful embedding, by studying the dual distance of a linear code. Since these results are essentially of combinatorial nature, they can be generalized to systematic codes, a large family containing all linear codes. We also compute the exact number of embedding solutions and point out the relationship between wet paper codes and orthogonal arrays.
    Mathematics Subject Classification: Primary: 94A60; Secondary: 94B60.


    \begin{equation} \\ \end{equation}
  • [1]

    D. Augot, M. Barbier and C. Fontaine, Ensuring message embedding in wet paper steganography, in "Transactions on Thirteenth IMA International Conference on Cryptography and Coding,'' Springer-Verlag, Berlin, Heidelberg, (2011), 244-258.


    J. Brierbrauer and J. Fridrich, Constructing good covering codes for applications in steganography, in "Transactions on Data Hiding and Multimedia Security III,'' Springer-Verlag, (2008), 1-22.doi: 10.1007/978-3-540-69019-1_1.


    F. Chai, X. S. Gao and C. Yuan, A characteristic set method for solving Boolean equations and applications in cryptanalysis of stream ciphers, J. Sys. Sci. Compl., 21 (2008), 191-208.doi: 10.1007/s11424-008-9103-0.


    C. Cooper, On the rank of random matrices, Random Struc. Algor., 16 (2000), 209-232.doi: 10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1.


    R. CrandallSome notes on steganography, http://os.inf.tu-dresden.de/ westfeld


    C. Fontaine and F. Galand, How Reed-Solomon codes can improve steganographic schemes, in "Information Hiding 9th International Workshop,'' Springer-Verlag, (2007), 130-144.


    J. Fridrich, M. Goljan, P. Lisonek and D. Soukal, Writing on wet paper, IEEE Trans. Signal Proc., 53 (2005), 3923-3935.doi: 10.1109/TSP.2005.855393.


    J. Fridrich, M. Goljan and D. Soukal, Efficient wet paper codes, in "Proceedings of Information Hiding,'' Springer-Verlag, 2005.doi: 10.1007/b104759.


    J. Fridrich, M. Goljan and D. Soukal, Steganography via codes for memory with defective cells, in "Proceedings of the Forty-Third Annual Allerton Conference On Communication, Control and Computing,'' (2005), 1521-1538.


    J. Fridrich, M. Goljan and D. Soukal, Wet paper codes with improved embedding efficiency, IEEE Trans. Inform. Forens. Secur., 1 (2006), 102-110.doi: 10.1109/TIFS.2005.863487.


    B. J. Hamilton, SINCGARS system improvement program (SIP) specific radio improvement, in "Proceedings of 1996 Tactical Communications Conference,'' (1996), 397-406.


    R. W. Hamming, "The Art of Probability for Scientists and Engineers,'' Westview Press, New York, 1994.


    A. S. Hedayat, N. J. A. Sloane and J. Stufken, "Orthogonal Arrays: Theory and Applications,'' Springer-Verlag, New York, 1999.


    M. Keinänen, "Techniques for Solving Boolean Equation Systems,'' Ph.D thesis, Espoo, Finland, 2006.


    V. F. Kolchin, "Random Graphs,'' Cambridge University Press, Cambridge, 1999.


    F. J. MacWilliams and N. J. Sloane, "The Theory of Error-Correcting Codes,'' North-Holland Publishing Co., Amsterdam, 1977.


    MinT, Online database for optimal parameters of $(t, m, s)$-nets, $(t, s)$-sequences, orthogonal arrays, linear codes, and OOAs, available at http://mint.sbg.ac.at/


    C. Munuera, On the generalized Hamming weights of geometric Goppa codes, IEEE Trans. Inform. Theory, 40 (1994), 2092-2099.doi: 10.1109/18.340488.


    M. Nadler, A 32-point $n=12$, $d=5$ code, IRE Trans. Inform. Theory, 8 (1962), 58.doi: 10.1109/TIT.1962.1057670.


    D. Schönfeld and A. Winkler, Embedding with syndrome coding based on BCH codes, in "Proceedings 8th ACM Workshop on Multimedia and Security,'' (2006), 214-223.


    D. Schönfeld and A. Winkler, Reducing the complexity of syndrome coding for embedding, in "Proceedings 10th ACM Workshop on Information Hiding,'' Springer-Verlag, (2007), 145-158.


    B.-Z. Shen, A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov bound for low rate, IEEE Trans. Inform. Theory, 39 (1993), 239-242.doi: 10.1109/18.179365.


    D. Stinson, Resilient functions and large sets of orthogonal arrays, Congressus Numerantium, 92 (1993), 105-110.


    C. Studholme and I. F. Blake, Random matrices and codes for the erasure channel, Algoritmica, 56 (2010), 605-620.doi: 10.1007/s00453-008-9192-0.


    J. H. van Lint, A new description of the Nadler code, IEEE Trans. Inform. Theory, 18 (1972), 825-826.doi: 10.1109/TIT.1972.1054904.


    J. H. van Lint, "Introduction to Coding Theory,'' Springer-Verlag, New York, 1982.


    V. K. Wei, Generalized Hamming weights for linear codes, IEEE Trans. Inform. Theory, 37 (1991), 1412-1418.doi: 10.1109/18.133259.


    W. Zhang, X. Zhang and S. Wang, Maximizing embedding efficiency by combining Hamming codes and wet paper codes, in "Proceedings 10th International Workshop on Information Hiding,'' Springer-Verlag, (2008), 60-71.

  • 加载中

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint