August  2012, 6(3): 287-303. doi: 10.3934/amc.2012.6.287

Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$

1. 

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain

2. 

Department of Mathematics, University of Scranton, Scranton, PA 18510, United States

Received  March 2011 Revised  March 2012 Published  August 2012

Self-dual codes over $\mathbb Z_2\times\mathbb Z_4$ are subgroups of $\mathbb Z_2^\alpha\times\mathbb Z_4^\beta$ that are equal to their orthogonal under an inner-product that relates these codes to the binary Hamming scheme. Three types of self-dual codes are defined. For each type, the possible values $\alpha,\beta$ such that there exist a self-dual code $\mathcal C\subseteq \mathbb Z_2^\alpha \times\mathbb Z_4^\beta$ are established. Moreover, the construction of such a code for each type and possible pair $(\alpha,\beta)$ is given. The standard techniques of invariant theory are applied to describe the weight enumerators for each type. Finally, we give a construction of self-dual codes from existing self-dual codes.
Citation: Joaquim Borges, Steven T. Dougherty, Cristina Fernández-Córdoba. Characterization and constructions of self-dual codes over $\mathbb Z_2\times \mathbb Z_4$. Advances in Mathematics of Communications, 2012, 6 (3) : 287-303. doi: 10.3934/amc.2012.6.287
References:
[1]

C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$,, J. Théorie Nombres Bordeaux, 12 (2000), 255.   Google Scholar

[2]

J. Bierbrauer, "Introduction to Coding Theory,'', Chapman & Hall/CRC, (2005).   Google Scholar

[3]

A. Blokhuis and A. E. Brouwer, Small additive quaternary codes,, European J. Combin., 25 (2004), 161.  doi: 10.1016/S0195-6698(03)00096-9.  Google Scholar

[4]

J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality,, in, (2006), 171.   Google Scholar

[5]

J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality,, Des. Codes Crypt., 54 (2010), 167.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[6]

J. Borges and J. Rifà, A characterization of 1-perfect additive codes,, IEEE Trans. Inform. Theory, 45 (1999), 1688.  doi: 10.1109/18.771247.  Google Scholar

[7]

R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes,, IEEE Trans. Inform. Theory, IT-37 (1991), 1222.  doi: 10.1109/18.86979.  Google Scholar

[8]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319.  doi: 10.1109/18.59931.  Google Scholar

[9]

P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Res. Rep. Suppl., 10 (1973).   Google Scholar

[10]

P. Delsarte and V. Levenshtein, Association schemes and coding theory,, IEEE Trans. Inform. Theory, 44 (1998), 2477.  doi: 10.1109/18.720545.  Google Scholar

[11]

S. T. Dougherty and P. Solé, Shadows of codes and lattices,, in, (2002), 139.   Google Scholar

[12]

C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel,, Des. Codes Crypt., 56 (2010), 43.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[13]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[14]

J.-L. Kim and V. Pless, Designs in additive codes over GF(4),, Des. Codes Crypt., 30 (2003), 187.  doi: 10.1023/A:1025484821641.  Google Scholar

[15]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland Publishing Co., (1977).   Google Scholar

[16]

K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties,, IEEE Trans. Inform. Theory, 48 (2002), 2587.  doi: 10.1109/TIT.2002.801474.  Google Scholar

[17]

J. Pujol and J. Rifà, Translation invariant propelinear codes,, IEEE Trans. Inform. Theory, 43 (1997), 590.  doi: 10.1109/18.556115.  Google Scholar

[18]

E. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[19]

H. N. Ward, A restriction on the weight enumerator of a self-dual code,, J. Combin. Theory Ser. A, 21 (1976), 253.  doi: 10.1016/0097-3165(76)90071-6.  Google Scholar

show all references

References:
[1]

C. Bachoc and P. Gaborit, On extremal additive $\mathbb F_4$ codes of length $10$ to $18$,, J. Théorie Nombres Bordeaux, 12 (2000), 255.   Google Scholar

[2]

J. Bierbrauer, "Introduction to Coding Theory,'', Chapman & Hall/CRC, (2005).   Google Scholar

[3]

A. Blokhuis and A. E. Brouwer, Small additive quaternary codes,, European J. Combin., 25 (2004), 161.  doi: 10.1016/S0195-6698(03)00096-9.  Google Scholar

[4]

J. Borges, C. Fernández, J. Pujol, J. Rifà and M. Villanueva, On $\mathbb Z_2\mathbb Z_4$-linear codes and duality,, in, (2006), 171.   Google Scholar

[5]

J. Borges, C. Fernández-Córdoba, J. Pujol, J. Rifà and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: generator matrices and duality,, Des. Codes Crypt., 54 (2010), 167.  doi: 10.1007/s10623-009-9316-9.  Google Scholar

[6]

J. Borges and J. Rifà, A characterization of 1-perfect additive codes,, IEEE Trans. Inform. Theory, 45 (1999), 1688.  doi: 10.1109/18.771247.  Google Scholar

[7]

R. A. Brualdi and V. S. Pless, Weight enumerators of self-dual codes,, IEEE Trans. Inform. Theory, IT-37 (1991), 1222.  doi: 10.1109/18.86979.  Google Scholar

[8]

J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes,, IEEE Trans. Inform. Theory, 36 (1990), 1319.  doi: 10.1109/18.59931.  Google Scholar

[9]

P. Delsarte, An algebraic approach to the association schemes of coding theory,, Philips Res. Rep. Suppl., 10 (1973).   Google Scholar

[10]

P. Delsarte and V. Levenshtein, Association schemes and coding theory,, IEEE Trans. Inform. Theory, 44 (1998), 2477.  doi: 10.1109/18.720545.  Google Scholar

[11]

S. T. Dougherty and P. Solé, Shadows of codes and lattices,, in, (2002), 139.   Google Scholar

[12]

C. Fernández, J. Pujol and M. Villanueva, $\mathbb Z_2\mathbb Z_4$-linear codes: rank and kernel,, Des. Codes Crypt., 56 (2010), 43.  doi: 10.1007/s10623-009-9340-9.  Google Scholar

[13]

A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of kerdock, preparata, goethals and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[14]

J.-L. Kim and V. Pless, Designs in additive codes over GF(4),, Des. Codes Crypt., 30 (2003), 187.  doi: 10.1023/A:1025484821641.  Google Scholar

[15]

F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'', North-Holland Publishing Co., (1977).   Google Scholar

[16]

K. T. Phelps and J. Rifà, On binary $1$-perfect additive codes: some structural properties,, IEEE Trans. Inform. Theory, 48 (2002), 2587.  doi: 10.1109/TIT.2002.801474.  Google Scholar

[17]

J. Pujol and J. Rifà, Translation invariant propelinear codes,, IEEE Trans. Inform. Theory, 43 (1997), 590.  doi: 10.1109/18.556115.  Google Scholar

[18]

E. Rains and N. J. A. Sloane, Self-dual codes,, in, (1998), 177.   Google Scholar

[19]

H. N. Ward, A restriction on the weight enumerator of a self-dual code,, J. Combin. Theory Ser. A, 21 (1976), 253.  doi: 10.1016/0097-3165(76)90071-6.  Google Scholar

[1]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[2]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[3]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[7]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[8]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[13]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (85)
  • HTML views (0)
  • Cited by (4)

[Back to Top]