Citation: |
[1] |
Y. Alkhamees, The group of automorphisms of finite chain rings, Arab Gulf J. Sci. Res., 8 (1990), 17-28. |
[2] |
Y. Alkhamees, The determination of the group of automorphisms of a finite chain ring of characteristic $p$, Q. J. Math., 42 (1991), 387-391.doi: 10.1093/qmath/42.1.387. |
[3] |
M. C. V. Amarra and F. R. Nemenzo, On $(1-u)$-cyclic codes over $\mathbb F$pk $+ u\mathbb F$pk, Appl. Math. Letters, 21 (2008), 1129-1133.doi: 10.1016/j.aml.2007.07.035. |
[4] |
C. Bachoc, Application of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A, 78 (1997), 92-119.doi: 10.1006/jcta.1996.2763. |
[5] |
G. Bini and F. Flamini, "Finite Commutative Rings and their Applications," Kluwer Academic Publishers, Massachusetts, 2002. |
[6] |
A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb F_2 + u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 1250-1255.doi: 10.1109/18.761278. |
[7] |
D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engin. Commun. Comput., 18 (2007), 379-389.doi: 10.1007/s00200-007-0043-z. |
[8] |
D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.doi: 10.3934/amc.2008.2.273. |
[9] |
D. Boucher and F. Ulmer, Codes as modules over skew polynomial rings, Lecture Notes Comput. Sci., 5921 (2009), 38-55.doi: 10.1007/978-3-642-10868-6_3. |
[10] |
D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symbol. Comput., 44 (2009), 1644-1656.doi: 10.1016/j.jsc.2007.11.008. |
[11] |
W. E. Clark and D. A. Drake, Finite chain rings, Abh. Math. Sem. Univ. Hamburg, 39 (1973), 147-153.doi: 10.1007/BF02992827. |
[12] |
W. E. Clark and J. J. Liang, Enumeration of finite commutative chain rings, J. Algebra, 27 (1973), 445-453.doi: 10.1016/0021-8693(73)90055-0. |
[13] |
H. Q. Dinh, Negacyclic codes of length $2^s$ over Galois rings, IEEE Trans. Inform. Theory, 51 (2005), 4252-4262.doi: 10.1109/TIT.2005.859284. |
[14] |
H. Q. Dinh, Constacyclic codes of length $2^s$ over Galois extension rings of $\mathbb F_2 + u\mathbb F_2$, IEEE Trans. Inform. Theory, 55 (2009), 1730-1740.doi: 10.1109/TIT.2009.2013015. |
[15] |
H. Q. Dinh, Constacyclic codes of length $p^s$ over $\mathbb F$pm $+ u\mathbb F$pm, J. Algebra, 324 (2010), 940-950.doi: 10.1016/j.jalgebra.2010.05.027. |
[16] |
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.doi: 10.1109/TIT.2004.831789. |
[17] |
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, available online at http://www.codetables.de (accessed on 2011-06-01). |
[18] |
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154. |
[19] |
T. Y. Lam, "Lectures on Modules and Rings,'' Springer-Verlag, New York, 1999. |
[20] |
B. R. McDonald, "Finite Rings with Identity," Marcel Dekker, New York, 1974. |
[21] |
G. H. Norton and A. Sălăgean, On the structure of linear and cyclic codes over a finite chain ring, Appl. Algebra Engin. Commun. Comput., 10 (2000), 489-506.doi: 10.1007/PL00012382. |
[22] |
J. F. Qian, L. N. Zhang and S. X. Zhu, $(1+u)$-cyclic and cyclic codes over the ring $\mathbb F_2 + u\mathbb F_2$, Appl. Math. Letters, 19 (2006), 820-823.doi: 10.1016/j.aml.2005.10.011. |
[23] |
P. Ribenboim, Sur la localisation des anneaux non commutatifs (French), in "Algèbre et Théorie des Nombres,'' Paris, (1972), 18 pp. |
[24] |
R. Sobhani and M. Esmaeili, Cyclic and negacyclic codes over the Galois ring G$R(p^2,m)$, Discrete Appl. Math., 157 (2009), 2892-2903.doi: 10.1016/j.dam.2009.03.001. |
[25] |
P. Udaya and A. Bonnecaze, Decoding of cyclic codes over $\mathbb F_2 +u\mathbb F_2$, IEEE Trans. Inform. Theory, 45 (1999), 2148-2157.doi: 10.1109/18.782165. |
[26] |
P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inform. Theory, 44 (1998), 1492-1503.doi: 10.1109/18.681324. |
[27] |
Z.-X. Wan, "Lectures on Finite Fields and Galois Rings," World Scientific, New Jersey, 2003. |