\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

$\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity

Abstract Related Papers Cited by
  • Hirzebruch and van der Geer attached theta functions to self-orthogonal, $C\subseteq C^{\bot}$, linear codes $C\subseteq\mathbb F_p^n$, for $p$ an odd prime, and related them to the Lee weight enumerator for the code [5, Ch. 5]. Choie and Jeong extended this result to Jacobi theta functions and provided an analytic proof of the Lee weight MacWilliams Identity for such $C$ [3]. We provide an analytic proof of the Hamming weight MacWilliams Identity for linear codes $C\subseteq\mathbb F_p^n$, generalizing the seminal result for binary codes $C\subseteq\mathbb F_2^n$ [2].
    Mathematics Subject Classification: Primary: 32N10, 11H71; Secondary: 11R04.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Betsumiya and Y. Choie, Jacobi forms over totally real fields and type II codes over galois rings $GR(2^m,f)$, European J. Combin., 25 (2005), 475-486.doi: 10.1016/j.ejc.2003.01.001.

    [2]

    M. Broué and M. Enguehard, Polynômes des poids de certains codes et fonctions theta de certains réseaux, Ann. Scie Ecole Norm. Sup., 5 (1972), 157-181.

    [3]

    Y. Choie and E. Jeong, Jacobi forms over totally real fields and codes over $\mathbbF_p$, Illinois J. Math., 46 (2002), 627-643.

    [4]

    J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups," Springer-Verlag, New York, 1999.

    [5]

    W. Ebeling, "Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch," Vieweg, Braunschqeig, 1994.

    [6]

    S. Lang, "Algebraic Number Theory," Springer-Verlag, New York, 1986.doi: 10.1007/978-1-4684-0296-4.

    [7]

    J. Leech and N. J. A. Sloane, Sphere packings and error-corrective codes, Canadian J. Math., 23 (1971), 718-745.doi: 10.4153/CJM-1971-081-3.

    [8]

    D. Marcus, "Number Fields," Springer-Verlag, New York, 1997.

    [9]

    N. J. A. Sloane, Codes over $GF(4)$ and complex lattices, J. Algebra, 52 (1978), 168-181.doi: 10.1016/0021-8693(78)90266-1.

    [10]

    H. M. Stark, Modular forms and related objects, in "CMS Conference Proceedings,'' 7 (1987), 421-455.

    [11]

    L. C. Washington, "Introduction to Cyclotomic Fields," Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-1934-7.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(80) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return