November  2012, 6(4): 401-418. doi: 10.3934/amc.2012.6.401

$\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity

1. 

777 Mariners Island Blvd., Suite 600, San Mateo, CA 94404, United States

Received  June 2011 Revised  October 2012 Published  November 2012

Hirzebruch and van der Geer attached theta functions to self-orthogonal, $C\subseteq C^{\bot}$, linear codes $C\subseteq\mathbb F_p^n$, for $p$ an odd prime, and related them to the Lee weight enumerator for the code [5, Ch. 5]. Choie and Jeong extended this result to Jacobi theta functions and provided an analytic proof of the Lee weight MacWilliams Identity for such $C$ [3]. We provide an analytic proof of the Hamming weight MacWilliams Identity for linear codes $C\subseteq\mathbb F_p^n$, generalizing the seminal result for binary codes $C\subseteq\mathbb F_2^n$ [2].
Citation: David Keyes. $\mathbb F_p$-codes, theta functions and the Hamming weight MacWilliams identity. Advances in Mathematics of Communications, 2012, 6 (4) : 401-418. doi: 10.3934/amc.2012.6.401
References:
[1]

K. Betsumiya and Y. Choie, Jacobi forms over totally real fields and type II codes over galois rings $GR(2^m,f)$,, European J. Combin., 25 (2005), 475.  doi: 10.1016/j.ejc.2003.01.001.  Google Scholar

[2]

M. Broué and M. Enguehard, Polynômes des poids de certains codes et fonctions theta de certains réseaux,, Ann. Scie Ecole Norm. Sup., 5 (1972), 157.   Google Scholar

[3]

Y. Choie and E. Jeong, Jacobi forms over totally real fields and codes over $\mathbbF_p$,, Illinois J. Math., 46 (2002), 627.   Google Scholar

[4]

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups,", Springer-Verlag, (1999).   Google Scholar

[5]

W. Ebeling, "Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch,", Vieweg, (1994).   Google Scholar

[6]

S. Lang, "Algebraic Number Theory,", Springer-Verlag, (1986).  doi: 10.1007/978-1-4684-0296-4.  Google Scholar

[7]

J. Leech and N. J. A. Sloane, Sphere packings and error-corrective codes,, Canadian J. Math., 23 (1971), 718.  doi: 10.4153/CJM-1971-081-3.  Google Scholar

[8]

D. Marcus, "Number Fields,", Springer-Verlag, (1997).   Google Scholar

[9]

N. J. A. Sloane, Codes over $GF(4)$ and complex lattices,, J. Algebra, 52 (1978), 168.  doi: 10.1016/0021-8693(78)90266-1.  Google Scholar

[10]

H. M. Stark, Modular forms and related objects,, in, 7 (1987), 421.   Google Scholar

[11]

L. C. Washington, "Introduction to Cyclotomic Fields,", Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-1934-7.  Google Scholar

show all references

References:
[1]

K. Betsumiya and Y. Choie, Jacobi forms over totally real fields and type II codes over galois rings $GR(2^m,f)$,, European J. Combin., 25 (2005), 475.  doi: 10.1016/j.ejc.2003.01.001.  Google Scholar

[2]

M. Broué and M. Enguehard, Polynômes des poids de certains codes et fonctions theta de certains réseaux,, Ann. Scie Ecole Norm. Sup., 5 (1972), 157.   Google Scholar

[3]

Y. Choie and E. Jeong, Jacobi forms over totally real fields and codes over $\mathbbF_p$,, Illinois J. Math., 46 (2002), 627.   Google Scholar

[4]

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups,", Springer-Verlag, (1999).   Google Scholar

[5]

W. Ebeling, "Lattices and Codes: A Course Partially Based on Lectures by F. Hirzebruch,", Vieweg, (1994).   Google Scholar

[6]

S. Lang, "Algebraic Number Theory,", Springer-Verlag, (1986).  doi: 10.1007/978-1-4684-0296-4.  Google Scholar

[7]

J. Leech and N. J. A. Sloane, Sphere packings and error-corrective codes,, Canadian J. Math., 23 (1971), 718.  doi: 10.4153/CJM-1971-081-3.  Google Scholar

[8]

D. Marcus, "Number Fields,", Springer-Verlag, (1997).   Google Scholar

[9]

N. J. A. Sloane, Codes over $GF(4)$ and complex lattices,, J. Algebra, 52 (1978), 168.  doi: 10.1016/0021-8693(78)90266-1.  Google Scholar

[10]

H. M. Stark, Modular forms and related objects,, in, 7 (1987), 421.   Google Scholar

[11]

L. C. Washington, "Introduction to Cyclotomic Fields,", Springer-Verlag, (1997).  doi: 10.1007/978-1-4612-1934-7.  Google Scholar

[1]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[2]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[3]

Martino Borello, Olivier Mila. Symmetries of weight enumerators and applications to Reed-Muller codes. Advances in Mathematics of Communications, 2019, 13 (2) : 313-328. doi: 10.3934/amc.2019021

[4]

Yuval Z. Flicker. Automorphic forms on PGSp(2). Electronic Research Announcements, 2004, 10: 39-50.

[5]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[6]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[7]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[8]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[9]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[10]

Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013

[11]

Zihui Liu, Xiangyong Zeng. The geometric structure of relative one-weight codes. Advances in Mathematics of Communications, 2016, 10 (2) : 367-377. doi: 10.3934/amc.2016011

[12]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[13]

Christine A. Kelley, Deepak Sridhara. Eigenvalue bounds on the pseudocodeword weight of expander codes. Advances in Mathematics of Communications, 2007, 1 (3) : 287-306. doi: 10.3934/amc.2007.1.287

[14]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[15]

Jérôme Ducoat, Frédérique Oggier. On skew polynomial codes and lattices from quotients of cyclic division algebras. Advances in Mathematics of Communications, 2016, 10 (1) : 79-94. doi: 10.3934/amc.2016.10.79

[16]

Amin Sakzad, Mohammad-Reza Sadeghi. On cycle-free lattices with high rate label codes. Advances in Mathematics of Communications, 2010, 4 (4) : 441-452. doi: 10.3934/amc.2010.4.441

[17]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[18]

Andries E. Brouwer, Tuvi Etzion. Some new distance-4 constant weight codes. Advances in Mathematics of Communications, 2011, 5 (3) : 417-424. doi: 10.3934/amc.2011.5.417

[19]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[20]

Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]