-
Previous Article
Extended combinatorial constructions for peer-to-peer user-private information retrieval
- AMC Home
- This Issue
-
Next Article
An algebraic approach for decoding spread codes
On the relationship between the traceability properties of Reed-Solomon codes
1. | Department of Telematics Engineering, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain, Spain |
2. | Department of Telematics Engineering, Universitat Politècnica de Catalunya, C. Jordi Girona 1-3, 08034 Barcelona, Spain, and Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Av. Carl Friedrich Gauss 7, 08860 Castelldefels (Barcelona), Spain |
References:
[1] |
A. Barg, G. R. Blakley and G. A. Kabatiansky, Digital fingerprinting codes: problem statements, constructions, identification of traitors,, IEEE Trans. Inform. Theory, 49 (2003), 852.
doi: 10.1109/TIT.2003.809570. |
[2] |
D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data,, in, (1995), 452.
doi: 10.1007/3-540-44750-4_36. |
[3] |
D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data,, IEEE Trans. Inform. Theory, 44 (1998), 1897.
doi: 10.1109/18.705568. |
[4] |
B. Chor, A. Fiat and M. Naor, Tracing traitors,, in, (1994), 480. Google Scholar |
[5] |
B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing traitors,, IEEE Trans. Inform. Theory, 46 (2000), 893.
doi: 10.1109/18.841169. |
[6] |
G. D. Cohen and H. G. Schaathun, Asymptotic overview on separating codes,, Tech. Report 248, (2003). Google Scholar |
[7] |
G. D. Cohen and H. G. Schaathun, Upper bounds on separating codes,, IEEE Trans. Inform. Theory, 50 (2004), 1291.
doi: 10.1109/TIT.2004.828140. |
[8] |
M. Fernandez, J. Cotrina, M. Soriano and N. Domingo, A note about the identifier parent property in Reed-Solomon codes,, Comput. Security, 29 (2010), 628.
doi: 10.1016/j.cose.2009.12.012. |
[9] |
A. D. Friedman, R. L. Graham and J. D. Ullman, Universal single transition time asynchronous state assignments,, IEEE Trans. Comput., C-18 (1969), 541.
doi: 10.1109/T-C.1969.222707. |
[10] |
H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz and L. M. G. M. Tolhuizen, On codes with the identifiable parent property,, J. Combin. Theory Ser. A, 82 (1998), 121.
doi: 10.1006/jcta.1997.2851. |
[11] |
H. Jin and M. Blaum, Combinatorial properties for traceability codes using error correcting codes,, IEEE Trans. Inform. Theory, 53 (2007), 804.
doi: 10.1109/TIT.2006.889730. |
[12] |
J. Körner and G. Simonyi, Separating partition systems and locally different sequences,, SIAM J. Discr. Math., 1 (1988), 355.
doi: 10.1137/0401035. |
[13] |
R. Lidl and H. Niederreiter, "Introduction to Finite Fields and their Applications,'' revised edition,, Cambridge University Press, (1994).
doi: 10.1017/CBO9781139172769. |
[14] |
M. S. Pinsker and Y. L. Sagalovich, Lower bound on the cardinality of code of automata's states,, Probl. Inform. Transm., 8 (1972), 59. Google Scholar |
[15] |
I. S. Reed and G. Solomon, Polynomial codes over certain finite fields,, SIAM J. Appl. Math., 8 (1960), 300.
doi: 10.1137/0108018. |
[16] |
Y. L. Sagalovich, Completely separating systems,, Probl. Inform. Transm., 18 (1982), 140.
|
[17] |
Y. L. Sagalovich, Separating systems,, Probl. Inform. Transm., 30 (1994), 105.
|
[18] |
A. Silverberg, J. Staddon and J. L. Walker, Efficient traitor tracing algorithms using list decoding,, in, (2001), 175.
doi: 10.1007/3-540-45682-1_11. |
[19] |
A. Silverberg, J. Staddon and J. L. Walker, Applications of list decoding to tracing traitors,, IEEE Trans. Inform. Theory, 49 (2003), 1312.
doi: 10.1109/TIT.2003.810630. |
[20] |
J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frameproof and traceability codes,, IEEE Trans. Inform. Theory, 47 (2001), 1042.
doi: 10.1109/18.915661. |
[21] |
D. R. Stinson, T. van Trung and R. Wei, Secure frameproof codes, key distribution patterns, group testing algorithms and related structures,, J. Stat. Plan. Infer., 86 (2000), 595.
doi: 10.1016/S0378-3758(99)00131-7. |
show all references
References:
[1] |
A. Barg, G. R. Blakley and G. A. Kabatiansky, Digital fingerprinting codes: problem statements, constructions, identification of traitors,, IEEE Trans. Inform. Theory, 49 (2003), 852.
doi: 10.1109/TIT.2003.809570. |
[2] |
D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data,, in, (1995), 452.
doi: 10.1007/3-540-44750-4_36. |
[3] |
D. Boneh and J. Shaw, Collusion-secure fingerprinting for digital data,, IEEE Trans. Inform. Theory, 44 (1998), 1897.
doi: 10.1109/18.705568. |
[4] |
B. Chor, A. Fiat and M. Naor, Tracing traitors,, in, (1994), 480. Google Scholar |
[5] |
B. Chor, A. Fiat, M. Naor and B. Pinkas, Tracing traitors,, IEEE Trans. Inform. Theory, 46 (2000), 893.
doi: 10.1109/18.841169. |
[6] |
G. D. Cohen and H. G. Schaathun, Asymptotic overview on separating codes,, Tech. Report 248, (2003). Google Scholar |
[7] |
G. D. Cohen and H. G. Schaathun, Upper bounds on separating codes,, IEEE Trans. Inform. Theory, 50 (2004), 1291.
doi: 10.1109/TIT.2004.828140. |
[8] |
M. Fernandez, J. Cotrina, M. Soriano and N. Domingo, A note about the identifier parent property in Reed-Solomon codes,, Comput. Security, 29 (2010), 628.
doi: 10.1016/j.cose.2009.12.012. |
[9] |
A. D. Friedman, R. L. Graham and J. D. Ullman, Universal single transition time asynchronous state assignments,, IEEE Trans. Comput., C-18 (1969), 541.
doi: 10.1109/T-C.1969.222707. |
[10] |
H. D. L. Hollmann, J. H. van Lint, J.-P. Linnartz and L. M. G. M. Tolhuizen, On codes with the identifiable parent property,, J. Combin. Theory Ser. A, 82 (1998), 121.
doi: 10.1006/jcta.1997.2851. |
[11] |
H. Jin and M. Blaum, Combinatorial properties for traceability codes using error correcting codes,, IEEE Trans. Inform. Theory, 53 (2007), 804.
doi: 10.1109/TIT.2006.889730. |
[12] |
J. Körner and G. Simonyi, Separating partition systems and locally different sequences,, SIAM J. Discr. Math., 1 (1988), 355.
doi: 10.1137/0401035. |
[13] |
R. Lidl and H. Niederreiter, "Introduction to Finite Fields and their Applications,'' revised edition,, Cambridge University Press, (1994).
doi: 10.1017/CBO9781139172769. |
[14] |
M. S. Pinsker and Y. L. Sagalovich, Lower bound on the cardinality of code of automata's states,, Probl. Inform. Transm., 8 (1972), 59. Google Scholar |
[15] |
I. S. Reed and G. Solomon, Polynomial codes over certain finite fields,, SIAM J. Appl. Math., 8 (1960), 300.
doi: 10.1137/0108018. |
[16] |
Y. L. Sagalovich, Completely separating systems,, Probl. Inform. Transm., 18 (1982), 140.
|
[17] |
Y. L. Sagalovich, Separating systems,, Probl. Inform. Transm., 30 (1994), 105.
|
[18] |
A. Silverberg, J. Staddon and J. L. Walker, Efficient traitor tracing algorithms using list decoding,, in, (2001), 175.
doi: 10.1007/3-540-45682-1_11. |
[19] |
A. Silverberg, J. Staddon and J. L. Walker, Applications of list decoding to tracing traitors,, IEEE Trans. Inform. Theory, 49 (2003), 1312.
doi: 10.1109/TIT.2003.810630. |
[20] |
J. N. Staddon, D. R. Stinson and R. Wei, Combinatorial properties of frameproof and traceability codes,, IEEE Trans. Inform. Theory, 47 (2001), 1042.
doi: 10.1109/18.915661. |
[21] |
D. R. Stinson, T. van Trung and R. Wei, Secure frameproof codes, key distribution patterns, group testing algorithms and related structures,, J. Stat. Plan. Infer., 86 (2000), 595.
doi: 10.1016/S0378-3758(99)00131-7. |
[1] |
Yujuan Li, Guizhen Zhu. On the error distance of extended Reed-Solomon codes. Advances in Mathematics of Communications, 2016, 10 (2) : 413-427. doi: 10.3934/amc.2016015 |
[2] |
Peter Beelen, David Glynn, Tom Høholdt, Krishna Kaipa. Counting generalized Reed-Solomon codes. Advances in Mathematics of Communications, 2017, 11 (4) : 777-790. doi: 10.3934/amc.2017057 |
[3] |
Antonio Cafure, Guillermo Matera, Melina Privitelli. Singularities of symmetric hypersurfaces and Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (1) : 69-94. doi: 10.3934/amc.2012.6.69 |
[4] |
Johan Rosenkilde. Power decoding Reed-Solomon codes up to the Johnson radius. Advances in Mathematics of Communications, 2018, 12 (1) : 81-106. doi: 10.3934/amc.2018005 |
[5] |
Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543 |
[6] |
Janne I. Kokkala, Patric R. J. Östergård. Further results on the classification of MDS codes. Advances in Mathematics of Communications, 2016, 10 (3) : 489-498. doi: 10.3934/amc.2016020 |
[7] |
Diego Napp, Roxana Smarandache. Constructing strongly-MDS convolutional codes with maximum distance profile. Advances in Mathematics of Communications, 2016, 10 (2) : 275-290. doi: 10.3934/amc.2016005 |
[8] |
Anna-Lena Horlemann-Trautmann, Alessandro Neri. A complete classification of partial MDS (maximally recoverable) codes with one global parity. Advances in Mathematics of Communications, 2020, 14 (1) : 69-88. doi: 10.3934/amc.2020006 |
[9] |
Sara D. Cardell, Joan-Josep Climent, Daniel Panario, Brett Stevens. A construction of $ \mathbb{F}_2 $-linear cyclic, MDS codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020047 |
[10] |
Martino Borello, Olivier Mila. Symmetries of weight enumerators and applications to Reed-Muller codes. Advances in Mathematics of Communications, 2019, 13 (2) : 313-328. doi: 10.3934/amc.2019021 |
[11] |
Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349 |
[12] |
Daniele Bartoli, Adnen Sboui, Leo Storme. Bounds on the number of rational points of algebraic hypersurfaces over finite fields, with applications to projective Reed-Muller codes. Advances in Mathematics of Communications, 2016, 10 (2) : 355-365. doi: 10.3934/amc.2016010 |
[13] |
Olav Geil, Stefano Martin. Relative generalized Hamming weights of q-ary Reed-Muller codes. Advances in Mathematics of Communications, 2017, 11 (3) : 503-531. doi: 10.3934/amc.2017041 |
[14] |
Andreas Klein, Leo Storme. On the non-minimality of the largest weight codewords in the binary Reed-Muller codes. Advances in Mathematics of Communications, 2011, 5 (2) : 333-337. doi: 10.3934/amc.2011.5.333 |
[15] |
Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163 |
[16] |
Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225 |
[17] |
Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039 |
[18] |
Joaquim Borges, Josep Rifà, Victor Zinoviev. Completely regular codes by concatenating Hamming codes. Advances in Mathematics of Communications, 2018, 12 (2) : 337-349. doi: 10.3934/amc.2018021 |
[19] |
Srimathy Srinivasan, Andrew Thangaraj. Codes on planar Tanner graphs. Advances in Mathematics of Communications, 2012, 6 (2) : 131-163. doi: 10.3934/amc.2012.6.131 |
[20] |
M. B. Paterson, D. R. Stinson, R. Wei. Combinatorial batch codes. Advances in Mathematics of Communications, 2009, 3 (1) : 13-27. doi: 10.3934/amc.2009.3.13 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]