-
Previous Article
Singularities of symmetric hypersurfaces and Reed-Solomon codes
- AMC Home
- This Issue
-
Next Article
Skew constacyclic codes over finite chain rings
A note on the minimum Lee distance of certain self-dual modular codes
1. | Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven |
References:
[1] |
B. van Asch and F. Martens, Lee weight enumerators of self-dual codes and theta functions, Adv. Math. Commun., 2 (2008), 393-402.
doi: 10.3934/amc.2008.2.393. |
[2] |
J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb Z$p2, Discr. Math., 308 (2008), 2984-3002.
doi: 10.1016/j.disc.2007.08.024. |
[3] |
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.
doi: 10.1109/18.761269. |
[4] |
A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[5] |
W. Ebeling, "Lattices and Codes,'' Friedr. Vieweg & Sohn, Braunschweig, 1994. |
[6] |
Y. H. Park, Modular independence and generator matrices for codes over $\mathbb Z_m$, Des. Codes Crypt., 50 (2009), 147-162.
doi: 10.1007/s10623-008-9220-8. |
[7] |
H. Petersson, "Modulfunktionen und Quadratische Formen,'' Springer-Verlag, Berlin, 1982. |
show all references
References:
[1] |
B. van Asch and F. Martens, Lee weight enumerators of self-dual codes and theta functions, Adv. Math. Commun., 2 (2008), 393-402.
doi: 10.3934/amc.2008.2.393. |
[2] |
J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb Z$p2, Discr. Math., 308 (2008), 2984-3002.
doi: 10.1016/j.disc.2007.08.024. |
[3] |
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.
doi: 10.1109/18.761269. |
[4] |
A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.
doi: 10.1007/BF01390768. |
[5] |
W. Ebeling, "Lattices and Codes,'' Friedr. Vieweg & Sohn, Braunschweig, 1994. |
[6] |
Y. H. Park, Modular independence and generator matrices for codes over $\mathbb Z_m$, Des. Codes Crypt., 50 (2009), 147-162.
doi: 10.1007/s10623-008-9220-8. |
[7] |
H. Petersson, "Modulfunktionen und Quadratische Formen,'' Springer-Verlag, Berlin, 1982. |
[1] |
Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393 |
[2] |
Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275 |
[3] |
Masaaki Harada. Note on the residue codes of self-dual $\mathbb{Z}_4$-codes having large minimum Lee weights. Advances in Mathematics of Communications, 2016, 10 (4) : 695-706. doi: 10.3934/amc.2016035 |
[4] |
Masaaki Harada, Ethan Novak, Vladimir D. Tonchev. The weight distribution of the self-dual $[128,64]$ polarity design code. Advances in Mathematics of Communications, 2016, 10 (3) : 643-648. doi: 10.3934/amc.2016032 |
[5] |
Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261 |
[6] |
Sihuang Hu, Gabriele Nebe. There is no $[24,12,9]$ doubly-even self-dual code over $\mathbb F_4$. Advances in Mathematics of Communications, 2016, 10 (3) : 583-588. doi: 10.3934/amc.2016027 |
[7] |
Masaaki Harada. New doubly even self-dual codes having minimum weight 20. Advances in Mathematics of Communications, 2020, 14 (1) : 89-96. doi: 10.3934/amc.2020007 |
[8] |
Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503 |
[9] |
Joe Gildea, Adrian Korban, Adam M. Roberts, Alexander Tylyshchak. Binary self-dual codes of various lengths with new weight enumerators from a modified bordered construction and neighbours. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022021 |
[10] |
Jie Geng, Huazhang Wu, Patrick Solé. On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021046 |
[11] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[12] |
María Chara, Ricardo A. Podestá, Ricardo Toledano. The conorm code of an AG-code. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021018 |
[13] |
Violetta Weger, Karan Khathuria, Anna-Lena Horlemann, Massimo Battaglioni, Paolo Santini, Edoardo Persichetti. On the hardness of the Lee syndrome decoding problem. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022029 |
[14] |
Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229 |
[15] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[16] |
Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047 |
[17] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[18] |
Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002 |
[19] |
Denis S. Krotov, Patric R. J. Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013 |
[20] |
Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]