\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A note on the minimum Lee distance of certain self-dual modular codes

Abstract Related Papers Cited by
  • In a former paper we investigated the connection between $p$-ary linear codes, $p$ prime, and theta functions. Corresponding to a given code a suitable lattice and its associated theta function were defined. Using results from the theory of modular forms we got an algorithm to determine an upper bound for the minimum Lee distance of certain self-dual codes. In this note we generalize this result to $m$-ary codes, where $m$ is either a power of a prime, or $m$ is square-free. If $m$ is of a different form the generalization will not work. A class of examples to illustrate this fact is given.
    Mathematics Subject Classification: Primary: 11F27, 11H71, 94B05; Secondary: 11F11, 94B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. van Asch and F. Martens, Lee weight enumerators of self-dual codes and theta functions, Adv. Math. Commun., 2 (2008), 393-402.doi: 10.3934/amc.2008.2.393.

    [2]

    J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb Z$p2, Discr. Math., 308 (2008), 2984-3002.doi: 10.1016/j.disc.2007.08.024.

    [3]

    E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.doi: 10.1109/18.761269.

    [4]

    A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.doi: 10.1007/BF01390768.

    [5]

    W. Ebeling, "Lattices and Codes,'' Friedr. Vieweg & Sohn, Braunschweig, 1994.

    [6]

    Y. H. Park, Modular independence and generator matrices for codes over $\mathbb Z_m$, Des. Codes Crypt., 50 (2009), 147-162.doi: 10.1007/s10623-008-9220-8.

    [7]

    H. Petersson, "Modulfunktionen und Quadratische Formen,'' Springer-Verlag, Berlin, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(131) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return