Citation: |
[1] |
B. van Asch and F. Martens, Lee weight enumerators of self-dual codes and theta functions, Adv. Math. Commun., 2 (2008), 393-402.doi: 10.3934/amc.2008.2.393. |
[2] |
J. M. P. Balmaceda, R. A. L. Betty and F. R. Nemenzo, Mass formula for self-dual codes over $\mathbb Z$p2, Discr. Math., 308 (2008), 2984-3002.doi: 10.1016/j.disc.2007.08.024. |
[3] |
E. Bannai, S. T. Dougherty, M. Harada and M. Oura, Type II codes, even unimodular lattices, and invariant rings, IEEE Trans. Inform. Theory, 45 (1999), 1194-1205.doi: 10.1109/18.761269. |
[4] |
A. R. Calderbank and N. J. A. Sloane, Modular and $p$-adic cyclic codes, Des. Codes Crypt., 6 (1995), 21-35.doi: 10.1007/BF01390768. |
[5] |
W. Ebeling, "Lattices and Codes,'' Friedr. Vieweg & Sohn, Braunschweig, 1994. |
[6] |
Y. H. Park, Modular independence and generator matrices for codes over $\mathbb Z_m$, Des. Codes Crypt., 50 (2009), 147-162.doi: 10.1007/s10623-008-9220-8. |
[7] |
H. Petersson, "Modulfunktionen und Quadratische Formen,'' Springer-Verlag, Berlin, 1982. |