-
Previous Article
Bounds for projective codes from semidefinite programming
- AMC Home
- This Issue
- Next Article
Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions
1. | Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sicuan 610031, China, China |
2. | Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 |
References:
[1] |
L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE. Trans. Inf. Theory, 35 (1990), 1487-1494. |
[2] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[3] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'' Research Studies Press, John Wiley & Sons Ltd, London, 1996. |
[4] |
K. Q. Feng, P. J.-S. Shiue and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Trans. Inf. Theory, 45 (1999), 296-303.
doi: 10.1109/18.746823. |
[5] |
H. Ganapathy, D. A. Pados and G. N. Karystinos, New bounds and optimal binary signature sets-Part I: Periodic total squared correlation, IEEE Trans. Inf. Theory, 59 (2011), 1123-1132. |
[6] |
M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444.
doi: 10.1364/JOSA.39.000437. |
[7] |
M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87. |
[8] |
M. J. E. Golay, Note on complementary series, Proc. IRE, 50 (1962), 84. |
[9] |
S. W. Golomb and G. Gong, "Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications,'' Cambridge Univeristy Press, Cambridge, 2005.
doi: 10.1017/CBO9780511546907. |
[10] |
H. L. Jin, G. D. Liang, Z. H. Liu and C. Q. Xu, The necessary condition of families of odd periodic perfect complementary sequence pairs, in "2009 International Conference on Computational Intelligence and Security,'' (2009), 303-307.
doi: 10.1109/CIS.2009.227. |
[11] |
G. N. Karystinos and D. A. Pados, New bounds on the total squared correlation and optimal design of DS-CDMA binary signature sets, IEEE Trans. Commun., 51 (2003), 48-51.
doi: 10.1109/TCOMM.2002.807628. |
[12] |
N. Levanon, "Radar Principles,'' Wiley Interscience, New York, 1988. |
[13] |
H. D. Lüke, Binary odd periodic complementary sequences, IEEE Trans. Inf. Theory, 43 (1997), 365-367.
doi: 10.1109/18.567768. |
[14] |
H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electron. Syst., 31 (1995), 495-498.
doi: 10.1109/7.366335. |
[15] |
M. G. Parker, K. G. Paterson and C. Tellambura, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunications'' (ed. J.G. Proakis), Wiley Interscience, New York, 2002. |
[16] |
K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[17] |
M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part I: System analysis, IEEE Trans. Inf. Theory, 25 (1977), 795-799. |
[18] |
M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part II: Code sequence analysis, IEEE Trans. Inf. Theory, 25 (1977), 800-803. |
[19] |
M. B. Pursley, "An Introduction to Digital Communications,'' Pearson Prentice Hall, U.S., 2005. |
[20] |
D. V. Sarwate, Meeting the Welch bound with equality, in "Sequences and Their Applications: Proceedings of SETA'98'' (eds. C. Ding, T. Helleseth and H. Niederreiter), Springer-Verlag, London, (1999), 79-102. |
[21] |
D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619.
doi: 10.1109/PROC.1980.11697. |
[22] |
H. D. Schotten, New optimum ternary complementary sets and almost quadriphase, perfect sequences, in "Int. Conference on Neural Networks and Signal Processing (ICNNSP'95),'' Nanjing, China, (1995), 1106-1109. |
[23] |
R. Sivaswamy, Self-clutter cancellation and ambiguity properties of subcomplementary sequences, IEEE Trans. Aerosp. Electron. Sysr., AES-18 (1982), 163-180.
doi: 10.1109/TAES.1982.309223. |
[24] |
C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-651.
doi: 10.1109/TIT.1972.1054860. |
[25] |
H. Wen, F. Hu and F. Jin, Design of odd periodic complementary binary signal set, in "Ninth IEEE Symposium on Computers and Communications 2004,'' 2 (2004), 590-593. |
show all references
References:
[1] |
L. Bömer and M. Antweiler, Periodic complementary binary sequences, IEEE. Trans. Inf. Theory, 35 (1990), 1487-1494. |
[2] |
J. A. Davis and J. Jedwab, Peak-to-mean power control in OFDM, Golay complementary sequences and Reed-Muller codes, IEEE Trans. Inf. Theory, 45 (1999), 2397-2417.
doi: 10.1109/18.796380. |
[3] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'' Research Studies Press, John Wiley & Sons Ltd, London, 1996. |
[4] |
K. Q. Feng, P. J.-S. Shiue and Q. Xiang, On aperiodic and periodic complementary binary sequences, IEEE Trans. Inf. Theory, 45 (1999), 296-303.
doi: 10.1109/18.746823. |
[5] |
H. Ganapathy, D. A. Pados and G. N. Karystinos, New bounds and optimal binary signature sets-Part I: Periodic total squared correlation, IEEE Trans. Inf. Theory, 59 (2011), 1123-1132. |
[6] |
M. J. E. Golay, Multislit spectroscopy, J. Opt. Soc. Amer., 39 (1949), 437-444.
doi: 10.1364/JOSA.39.000437. |
[7] |
M. J. E. Golay, Complementary series, IRE Trans., 7 (1961), 82-87. |
[8] |
M. J. E. Golay, Note on complementary series, Proc. IRE, 50 (1962), 84. |
[9] |
S. W. Golomb and G. Gong, "Signal Designs with Good Correlation: For Wireless Communication, Cryptography and Radar Applications,'' Cambridge Univeristy Press, Cambridge, 2005.
doi: 10.1017/CBO9780511546907. |
[10] |
H. L. Jin, G. D. Liang, Z. H. Liu and C. Q. Xu, The necessary condition of families of odd periodic perfect complementary sequence pairs, in "2009 International Conference on Computational Intelligence and Security,'' (2009), 303-307.
doi: 10.1109/CIS.2009.227. |
[11] |
G. N. Karystinos and D. A. Pados, New bounds on the total squared correlation and optimal design of DS-CDMA binary signature sets, IEEE Trans. Commun., 51 (2003), 48-51.
doi: 10.1109/TCOMM.2002.807628. |
[12] |
N. Levanon, "Radar Principles,'' Wiley Interscience, New York, 1988. |
[13] |
H. D. Lüke, Binary odd periodic complementary sequences, IEEE Trans. Inf. Theory, 43 (1997), 365-367.
doi: 10.1109/18.567768. |
[14] |
H. D. Lüke and H. D. Schotten, Odd-perfect almost binary correlation sequences, IEEE Trans. Aerosp. Electron. Syst., 31 (1995), 495-498.
doi: 10.1109/7.366335. |
[15] |
M. G. Parker, K. G. Paterson and C. Tellambura, Golay complementary sequences, in "Wiley Encyclopedia of Telecommunications'' (ed. J.G. Proakis), Wiley Interscience, New York, 2002. |
[16] |
K. G. Paterson, Generalized Reed-Muller codes and power control for OFDM modulation, IEEE. Trans. Inf. Theory, 46 (2000), 104-120.
doi: 10.1109/18.817512. |
[17] |
M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part I: System analysis, IEEE Trans. Inf. Theory, 25 (1977), 795-799. |
[18] |
M. B. Pursley, Performance evaluation for phase-coded spread-spectrum multiple-access communication--Part II: Code sequence analysis, IEEE Trans. Inf. Theory, 25 (1977), 800-803. |
[19] |
M. B. Pursley, "An Introduction to Digital Communications,'' Pearson Prentice Hall, U.S., 2005. |
[20] |
D. V. Sarwate, Meeting the Welch bound with equality, in "Sequences and Their Applications: Proceedings of SETA'98'' (eds. C. Ding, T. Helleseth and H. Niederreiter), Springer-Verlag, London, (1999), 79-102. |
[21] |
D. V. Sarwate and M. B. Pursley, Crosscorrelation properties of pseudorandom and related sequences, Proc. IEEE, 68 (1980), 593-619.
doi: 10.1109/PROC.1980.11697. |
[22] |
H. D. Schotten, New optimum ternary complementary sets and almost quadriphase, perfect sequences, in "Int. Conference on Neural Networks and Signal Processing (ICNNSP'95),'' Nanjing, China, (1995), 1106-1109. |
[23] |
R. Sivaswamy, Self-clutter cancellation and ambiguity properties of subcomplementary sequences, IEEE Trans. Aerosp. Electron. Sysr., AES-18 (1982), 163-180.
doi: 10.1109/TAES.1982.309223. |
[24] |
C. C. Tseng and C. L. Liu, Complementary sets of sequences, IEEE Trans. Inf. Theory, 18 (1972), 644-651.
doi: 10.1109/TIT.1972.1054860. |
[25] |
H. Wen, F. Hu and F. Jin, Design of odd periodic complementary binary signal set, in "Ninth IEEE Symposium on Computers and Communications 2004,'' 2 (2004), 590-593. |
[1] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[2] |
Zhen Li, Cuiling Fan, Wei Su, Yanfeng Qi. Aperiodic/periodic complementary sequence pairs over quaternions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021063 |
[3] |
Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim, Dae-Woon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 61-68. doi: 10.3934/amc.2010.4.61 |
[4] |
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237 |
[5] |
Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022019 |
[6] |
Liqun Yao, Wenli Ren, Yong Wang, Chunming Tang. Z-complementary pairs with flexible lengths and large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021037 |
[7] |
Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9 |
[8] |
Ugo Locatelli, Letizia Stefanelli. Quasi-periodic motions in a special class of dynamical equations with dissipative effects: A pair of detection methods. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1155-1187. doi: 10.3934/dcdsb.2015.20.1155 |
[9] |
Frank Fiedler. Small Golay sequences. Advances in Mathematics of Communications, 2013, 7 (4) : 379-407. doi: 10.3934/amc.2013.7.379 |
[10] |
Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011 |
[11] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[12] |
Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control and Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042 |
[13] |
Andrea Braides, Margherita Solci, Enrico Vitali. A derivation of linear elastic energies from pair-interaction atomistic systems. Networks and Heterogeneous Media, 2007, 2 (3) : 551-567. doi: 10.3934/nhm.2007.2.551 |
[14] |
Bernard Bonnard, Olivier Cots, Jérémy Rouot, Thibaut Verron. Time minimal saturation of a pair of spins and application in Magnetic Resonance Imaging. Mathematical Control and Related Fields, 2020, 10 (1) : 47-88. doi: 10.3934/mcrf.2019029 |
[15] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[16] |
Leszek Gasiński, Nikolaos S. Papageorgiou. A pair of positive solutions for $(p,q)$-equations with combined nonlinearities. Communications on Pure and Applied Analysis, 2014, 13 (1) : 203-215. doi: 10.3934/cpaa.2014.13.203 |
[17] |
Mridul Nandi, Tapas Pandit. Efficient fully CCA-secure predicate encryptions from pair encodings. Advances in Mathematics of Communications, 2022, 16 (1) : 37-72. doi: 10.3934/amc.2020098 |
[18] |
Gaofei Wu, Yuqing Zhang, Xuefeng Liu. New complementary sets of length $2^m$ and size 4. Advances in Mathematics of Communications, 2016, 10 (4) : 825-845. doi: 10.3934/amc.2016043 |
[19] |
Lisha Wang, Huaming Song, Ding Zhang, Hui Yang. Pricing decisions for complementary products in a fuzzy dual-channel supply chain. Journal of Industrial and Management Optimization, 2019, 15 (1) : 343-364. doi: 10.3934/jimo.2018046 |
[20] |
Mitali Sarkar, Young Hae Lee. Optimum pricing strategy for complementary products with reservation price in a supply chain model. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1553-1586. doi: 10.3934/jimo.2017007 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]