Advanced Search
Article Contents
Article Contents

A new class of majority-logic decodable codes derived from polarity designs

Abstract Related Papers Cited by
  • The polarity designs, introduced in [9], are combinatorial 2-designs having the same parameters as a projective geometry design $PG_s(2s,q)$ formed by the $s$-subspaces of $PG(2s,q)$, $s\ge 2$, $q=p^t$, $p$ prime. If $q=p$ is a prime, a polarity design has also the same $p$-rank as $PG_s(2s,p)$. If $q=2$, any polarity 2-design is extendable to a 3-design having the same parameters and 2-rank as an affine geometry design $AG_{s+1}(2s+1,2)$ formed by the $(s+1)$-subspaces of $AG(2s+1,2)$. It is shown in this paper that a linear code being the null space of the incidence matrix of a polarity design can correct by majority-logic decoding the same number of errors as the projective geometry code based on $PG_s(2s,q)$. In the binary case, any polarity 3-design yields a binary self-dual code with the same parameters, minimum distance, and correcting the same number of errors by majority-logic decoding as the Reed-Muller code of length $2^{2s+1}$ and order $s$.
    Mathematics Subject Classification: Primary: 94B30; Secondary: 05B25.


    \begin{equation} \\ \end{equation}
  • [1]

    E. F. Assmus Jr. and J. D. Key, "Designs and Their Codes,'' Cambridge Univ. Press, Cambridge, 1992.


    T. Beth, D. Jungnickel and H. Lenz, "Design Theory,'' 2nd edition, Cambridge Univ. Press, Cambridge, 1999.


    I. F. Blake and R. C. Mullin, "The Mathematical Theory of Coding,'' Academic Press, New York, 1975.


    D. Clark, D. Jungnickel and V. D. Tonchev, Affine geometry designs, polarities, and Hamada's conjecture, J. Combin. Theory Ser. A, 118 (2011), 231-239.doi: 10.1016/j.jcta.2010.06.007.


    P. Delsarte, J.-M. Goethals and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Inform. Control, 16 (1970), 403-442.doi: 10.1016/S0019-9958(70)90214-7.


    J.-M. Goethals and P. Delsarte, On a class of majority-decodable cyclic codes, IEEE Trans. Inform. Theory, 14 (1968), 182-188.


    N. Hamada, On the $p$-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its application to error correcting codes, Hiroshima Math. J., 3 (1973), 154-226.


    J. W. P. Hirschfeld, "Projective Geometries over Finite Fields,'' 2nd edition, Oxford Univ. Press, Oxford, 1988.


    D. Jungnickel and V. D. Tonchev, Polarities, quasi-symmetric designs, and Hamada's conjecture, Des. Codes Cryptogr., 51 (2009), 131-140.doi: 10.1007/s10623-008-9249-8.


    D. Jungnickel and V. D. Tonchev, The number of designs with geometric parameters grows exponentially, Des. Codes Cryptogr., 55 (2010), 131-140.doi: 10.1007/s10623-009-9299-6.


    D. E. Muller, Application of Boolean algebra to switching circuit design and to error detection, IRE Trans. Electron. Comput., EC-3 (1954), 6-12.


    W. W. Peterson and E. J. Weldon, "Error-Correcting Codes,'' 2nd edition, MIT Press, Cambridge, MA, 1972.


    M. Rahman and I. F. Blake, Majority logic decoding using combinatorial designs, IEEE Trans. Inform. Theory, 21 (1975), 585-587.doi: 10.1109/TIT.1975.1055428.


    I. S. Reed, A class of multiple-error correcting codes and the decoding scheme, IRE Trans. Inform. Theory, 4 (1954), 38-49.


    L. D. Rudolph, A class of majority logic decodable codes, IEEE Trans. Inform. Theory, 13 (1967), 305-307.doi: 10.1109/TIT.1967.1053994.


    V. D. Tonchev, "Combinatorial Configurations: Designs, Codes, Graphs,'' Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1988.


    E. J. Weldon, Euclidean geometry cyclic codes, in "Proceedings of the Conference on Combinatorial Mathematics and its Applications,'' Univ. North Carolina, Chapel Hill, 1967.

  • 加载中

Article Metrics

HTML views() PDF downloads(149) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint