August  2013, 7(3): 279-292. doi: 10.3934/amc.2013.7.279

New nonexistence results for spherical designs

1. 

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G.Bonchev str., 1113 Sofia, Bulgaria

2. 

Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria

Received  July 2012 Revised  March 2013 Published  July 2013

New nonexistence results for spherical designs of odd strength and odd cardinality are proved by improvements on previously applied polynomial techniques. This implies new bounds on the designs under consideration either in small dimensions and in certain asymptotic process.
Citation: Peter Boyvalenkov, Maya Stoyanova. New nonexistence results for spherical designs. Advances in Mathematics of Communications, 2013, 7 (3) : 279-292. doi: 10.3934/amc.2013.7.279
References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,'' Dover, New York, 1965.

[2]

B. Bajnok, Constructions of spherical 3-designs, Des. Codes Crypt., 21 (2000), 11-18. doi: 10.1023/A:1008367006853.

[3]

S. Boumova, P. Boyvalenkov and D. Danev, Necessary conditions for existence of some designs in polynomial metric spaces, Europ. J. Combin., 20 (1999), 213-225. doi: 10.1006/eujc.1998.0278.

[4]

S. Boumova, P. Boyvalenkov and D. Danev, New nonexistence results for spherical designs, in "Constructive Theory of Functions'' (ed. B. Bojanov), Darba, Sofia, (2003), 225-232.

[5]

S. Boumova, P. Boyvalenkov, H. Kulina and M. Stoyanova, Polynomial techniques for investigation of spherical designs, Des. Codes Crypt., 51 (2009), 275-288. doi: 10.1007/s10623-008-9260-0.

[6]

S. Boumova, P. Boyvalenkov and M. Stoyanova, A method for proving nonexistence of spherical designs of odd strength and odd cardinality, Probl. Inform. Transm., 45 (2009), 110-123; translated from: Probl. Pered. Inform., 45 (2009), 41-55. doi: 10.1134/S0032946009020033.

[7]

S. Boumova and D. Danev, On the asymptotic behaviour of a necessary condition for existence of spherical designs, in "Proc. Intern. Workshop ACCT,'' (2002), 54-57.

[8]

P. Boyvalenkov, D. Danev and S. Nikova, Nonexistence of certain spherical designs of odd strengths and cardinalities, Discr. Comp. Geom., 21 (1999), 143-156. doi: 10.1007/PL00009406.

[9]

P. Boyvalenkov and M. Stoyanova, A new asymptotic bound of the minimum possible odd cardinality of spherical $(2k-1)$-designs, Discrete Math., 310 (2010), 2170-2175. doi: 10.1016/j.disc.2010.04.007.

[10]

P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388.

[11]

V. I. Levenshtein, Universal bounds for codes and designs, in "Handbook of Coding Theory'' (eds. V. Pless and W.C. Huffman), Elsevier, (1998), 499-648.

[12]

, . http://www.fmi.uni-sofia.bg/algebra/mstoyanova.shtml

show all references

References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,'' Dover, New York, 1965.

[2]

B. Bajnok, Constructions of spherical 3-designs, Des. Codes Crypt., 21 (2000), 11-18. doi: 10.1023/A:1008367006853.

[3]

S. Boumova, P. Boyvalenkov and D. Danev, Necessary conditions for existence of some designs in polynomial metric spaces, Europ. J. Combin., 20 (1999), 213-225. doi: 10.1006/eujc.1998.0278.

[4]

S. Boumova, P. Boyvalenkov and D. Danev, New nonexistence results for spherical designs, in "Constructive Theory of Functions'' (ed. B. Bojanov), Darba, Sofia, (2003), 225-232.

[5]

S. Boumova, P. Boyvalenkov, H. Kulina and M. Stoyanova, Polynomial techniques for investigation of spherical designs, Des. Codes Crypt., 51 (2009), 275-288. doi: 10.1007/s10623-008-9260-0.

[6]

S. Boumova, P. Boyvalenkov and M. Stoyanova, A method for proving nonexistence of spherical designs of odd strength and odd cardinality, Probl. Inform. Transm., 45 (2009), 110-123; translated from: Probl. Pered. Inform., 45 (2009), 41-55. doi: 10.1134/S0032946009020033.

[7]

S. Boumova and D. Danev, On the asymptotic behaviour of a necessary condition for existence of spherical designs, in "Proc. Intern. Workshop ACCT,'' (2002), 54-57.

[8]

P. Boyvalenkov, D. Danev and S. Nikova, Nonexistence of certain spherical designs of odd strengths and cardinalities, Discr. Comp. Geom., 21 (1999), 143-156. doi: 10.1007/PL00009406.

[9]

P. Boyvalenkov and M. Stoyanova, A new asymptotic bound of the minimum possible odd cardinality of spherical $(2k-1)$-designs, Discrete Math., 310 (2010), 2170-2175. doi: 10.1016/j.disc.2010.04.007.

[10]

P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388.

[11]

V. I. Levenshtein, Universal bounds for codes and designs, in "Handbook of Coding Theory'' (eds. V. Pless and W.C. Huffman), Elsevier, (1998), 499-648.

[12]

, . http://www.fmi.uni-sofia.bg/algebra/mstoyanova.shtml

[1]

Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105

[2]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[3]

Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035

[4]

Ivica Martinjak, Mario-Osvin Pavčević. Symmetric designs possessing tactical decompositions. Advances in Mathematics of Communications, 2011, 5 (2) : 199-208. doi: 10.3934/amc.2011.5.199

[5]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

[6]

Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119

[7]

Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100

[8]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[9]

Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499

[10]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[11]

Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161

[12]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[13]

Michael Braun, Michael Kiermaier, Reinhard Laue. New 2-designs over finite fields from derived and residual designs. Advances in Mathematics of Communications, 2019, 13 (1) : 165-170. doi: 10.3934/amc.2019010

[14]

Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic and Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063

[15]

François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1259-1282. doi: 10.3934/dcds.2010.27.1259

[16]

Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2417-2423. doi: 10.3934/dcdsb.2014.19.2417

[17]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[18]

Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic and Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001

[19]

Milo Viviani. An algebraic approach to the spontaneous formation of spherical jets. Journal of Computational Dynamics, 2022, 9 (2) : 279-298. doi: 10.3934/jcd.2021028

[20]

Eun-Kyung Cho, Cunsheng Ding, Jong Yoon Hyun. A spectral characterisation of $ t $-designs and its applications. Advances in Mathematics of Communications, 2019, 13 (3) : 477-503. doi: 10.3934/amc.2019030

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]