-
Previous Article
New classes of optimal frequency hopping sequences with low hit zone
- AMC Home
- This Issue
-
Next Article
The classification of complementary information set codes of lengths $14$ and $16$
New nonexistence results for spherical designs
1. | Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G.Bonchev str., 1113 Sofia, Bulgaria |
2. | Faculty of Mathematics and Informatics, Sofia University, 5 James Bourchier blvd, 1164 Sofia, Bulgaria |
References:
[1] |
M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,'', Dover, (1965). Google Scholar |
[2] |
B. Bajnok, Constructions of spherical 3-designs,, Des. Codes Crypt., 21 (2000), 11.
doi: 10.1023/A:1008367006853. |
[3] |
S. Boumova, P. Boyvalenkov and D. Danev, Necessary conditions for existence of some designs in polynomial metric spaces,, Europ. J. Combin., 20 (1999), 213.
doi: 10.1006/eujc.1998.0278. |
[4] |
S. Boumova, P. Boyvalenkov and D. Danev, New nonexistence results for spherical designs,, in, (2003), 225.
|
[5] |
S. Boumova, P. Boyvalenkov, H. Kulina and M. Stoyanova, Polynomial techniques for investigation of spherical designs,, Des. Codes Crypt., 51 (2009), 275.
doi: 10.1007/s10623-008-9260-0. |
[6] |
S. Boumova, P. Boyvalenkov and M. Stoyanova, A method for proving nonexistence of spherical designs of odd strength and odd cardinality,, Probl. Inform. Transm., 45 (2009), 110.
doi: 10.1134/S0032946009020033. |
[7] |
S. Boumova and D. Danev, On the asymptotic behaviour of a necessary condition for existence of spherical designs,, in, (2002), 54. Google Scholar |
[8] |
P. Boyvalenkov, D. Danev and S. Nikova, Nonexistence of certain spherical designs of odd strengths and cardinalities,, Discr. Comp. Geom., 21 (1999), 143.
doi: 10.1007/PL00009406. |
[9] |
P. Boyvalenkov and M. Stoyanova, A new asymptotic bound of the minimum possible odd cardinality of spherical $(2k-1)$-designs,, Discrete Math., 310 (2010), 2170.
doi: 10.1016/j.disc.2010.04.007. |
[10] |
P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs,, Geom. Dedicata, 6 (1977), 363.
|
[11] |
V. I. Levenshtein, Universal bounds for codes and designs,, in, (1998), 499.
|
[12] |
, ., , (). Google Scholar |
show all references
References:
[1] |
M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,'', Dover, (1965). Google Scholar |
[2] |
B. Bajnok, Constructions of spherical 3-designs,, Des. Codes Crypt., 21 (2000), 11.
doi: 10.1023/A:1008367006853. |
[3] |
S. Boumova, P. Boyvalenkov and D. Danev, Necessary conditions for existence of some designs in polynomial metric spaces,, Europ. J. Combin., 20 (1999), 213.
doi: 10.1006/eujc.1998.0278. |
[4] |
S. Boumova, P. Boyvalenkov and D. Danev, New nonexistence results for spherical designs,, in, (2003), 225.
|
[5] |
S. Boumova, P. Boyvalenkov, H. Kulina and M. Stoyanova, Polynomial techniques for investigation of spherical designs,, Des. Codes Crypt., 51 (2009), 275.
doi: 10.1007/s10623-008-9260-0. |
[6] |
S. Boumova, P. Boyvalenkov and M. Stoyanova, A method for proving nonexistence of spherical designs of odd strength and odd cardinality,, Probl. Inform. Transm., 45 (2009), 110.
doi: 10.1134/S0032946009020033. |
[7] |
S. Boumova and D. Danev, On the asymptotic behaviour of a necessary condition for existence of spherical designs,, in, (2002), 54. Google Scholar |
[8] |
P. Boyvalenkov, D. Danev and S. Nikova, Nonexistence of certain spherical designs of odd strengths and cardinalities,, Discr. Comp. Geom., 21 (1999), 143.
doi: 10.1007/PL00009406. |
[9] |
P. Boyvalenkov and M. Stoyanova, A new asymptotic bound of the minimum possible odd cardinality of spherical $(2k-1)$-designs,, Discrete Math., 310 (2010), 2170.
doi: 10.1016/j.disc.2010.04.007. |
[10] |
P. Delsarte, J.-M. Goethals and J. J. Seidel, Spherical codes and designs,, Geom. Dedicata, 6 (1977), 363.
|
[11] |
V. I. Levenshtein, Universal bounds for codes and designs,, in, (1998), 499.
|
[12] |
, ., , (). Google Scholar |
[1] |
Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105 |
[2] |
Ivica Martinjak, Mario-Osvin Pavčević. Symmetric designs possessing tactical decompositions. Advances in Mathematics of Communications, 2011, 5 (2) : 199-208. doi: 10.3934/amc.2011.5.199 |
[3] |
Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131 |
[4] |
Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310 |
[5] |
Aravind Asok, James Parson. Equivariant sheaves on some spherical varieties. Electronic Research Announcements, 2011, 18: 119-130. doi: 10.3934/era.2011.18.119 |
[6] |
Robert Schippa. Sharp Strichartz estimates in spherical coordinates. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2047-2051. doi: 10.3934/cpaa.2017100 |
[7] |
Shaobo Lin, Xingping Sun, Zongben Xu. Discretizing spherical integrals and its applications. Conference Publications, 2013, 2013 (special) : 499-514. doi: 10.3934/proc.2013.2013.499 |
[8] |
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243 |
[9] |
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373 |
[10] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[11] |
Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003 |
[12] |
Michael Braun, Michael Kiermaier, Reinhard Laue. New 2-designs over finite fields from derived and residual designs. Advances in Mathematics of Communications, 2019, 13 (1) : 165-170. doi: 10.3934/amc.2019010 |
[13] |
Jan Haskovec, Nader Masmoudi, Christian Schmeiser, Mohamed Lazhar Tayeb. The Spherical Harmonics Expansion model coupled to the Poisson equation. Kinetic & Related Models, 2011, 4 (4) : 1063-1079. doi: 10.3934/krm.2011.4.1063 |
[14] |
François Alouges, Sylvain Faure, Jutta Steiner. The vortex core structure inside spherical ferromagnetic particles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1259-1282. doi: 10.3934/dcds.2010.27.1259 |
[15] |
Marcin Bugdoł, Tadeusz Nadzieja. A nonlocal problem describing spherical system of stars. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2417-2423. doi: 10.3934/dcdsb.2014.19.2417 |
[16] |
C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189 |
[17] |
Fabrice Baudoin, Camille Tardif. Hypocoercive estimates on foliations and velocity spherical Brownian motion. Kinetic & Related Models, 2018, 11 (1) : 1-23. doi: 10.3934/krm.2018001 |
[18] |
Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161 |
[19] |
Crnković Dean, Vedrana Mikulić Crnković, Bernardo G. Rodrigues. On self-orthogonal designs and codes related to Held's simple group. Advances in Mathematics of Communications, 2018, 12 (3) : 607-628. doi: 10.3934/amc.2018036 |
[20] |
Tran van Trung. Construction of 3-designs using $(1,\sigma)$-resolution. Advances in Mathematics of Communications, 2016, 10 (3) : 511-524. doi: 10.3934/amc.2016022 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]