-
Previous Article
Average complexities of access structures on five participants
- AMC Home
- This Issue
-
Next Article
New nonexistence results for spherical designs
New classes of optimal frequency hopping sequences with low hit zone
1. | School of Mathematics and Computer Engineering, The Key Laboratory of Network Intelligent Information Processing, Xihua University, Chengdu, Sichuan 610039, China |
2. | School of Information Science and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031, China |
3. | School of Mathematics, Southwest Jiaotong University, Chengdu, 610031 |
References:
[1] |
W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139.
doi: 10.1109/TIT.2004.842708. |
[2] |
J. H. Chung, Y. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving technique,, IEEE Trans. Inf. Theory, 55 (2009), 5783.
doi: 10.1109/TIT.2009.2032742. |
[3] |
J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters,, IEEE Trans. Inf. Theory, 56 (2010), 1685.
doi: 10.1109/TIT.2010.2040888. |
[4] |
C. Ding, R. Fuji-Hara, Y. Fujiwara, et al., Sets of frequency hopping sequences: Bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297.
doi: 10.1109/TIT.2009.2021366. |
[5] |
C. Ding, T. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation,, IEEE Trans. Inf. Theory, 47 (2001), 428.
doi: 10.1109/18.904555. |
[6] |
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency hopping sequences,, IEEE Trans. Inf. Theory, 53 (2007), 2606.
doi: 10.1109/TIT.2007.899545. |
[7] |
C. Ding and J. Yin, Sets of optimal frequency-hopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741.
doi: 10.1109/TIT.2008.926410. |
[8] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'', RSP-John Wiley Sons Inc., (1996). Google Scholar |
[9] |
P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency hopping CDMA systems,, IEEE Trans. Wir. Commun., 4 (2005), 2836. Google Scholar |
[10] |
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach,, IEEE Trans. Inf. Theory, 50 (2004), 2408.
doi: 10.1109/TIT.2004.834783. |
[11] |
G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency hopping sequences,, J. Combin. Theory Ser. A, 113 (2006), 1699.
doi: 10.1016/j.jcta.2006.03.019. |
[12] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and crosscorrelation properties,, IEEE Trans. Inf. Theory, 55 (2009), 867.
doi: 10.1109/TIT.2008.2009856. |
[13] |
G. Gong, Theory and applications of q-ary interleaved sequences,, IEEE Trans. Inf. Theory, 41 (1995), 400.
doi: 10.1109/18.370141. |
[14] |
G. Gong, New designs for signal sets with low cross correlation, balance property and large linear span: GF(p) case,, IEEE Trans. Inf. Theory, 48 (2002), 2847.
doi: 10.1109/TIT.2002.804044. |
[15] |
S. Hong, C. Seol and K. Cheun, Performance of soft decision decoded synchronous FHSS multiple access networks using MFSK modulation under rayleigh fading,, IEEE Trans. Commun., 59 (2011), 1066. Google Scholar |
[16] |
H. D. Jia, D. Yuan, D. Y. Peng, et al., On a general class of quadratic hopping sequences,, Sci. China Ser. F, 12 (2008), 2101.
doi: 10.1007/s11432-008-0136-8. |
[17] |
N. R. Lanka, S. A. Patnaik and R. A. Harjani, Frequency-hopped quadrature frequency synthesizer in 0.13-$\mu$m technology,, IEEE J. Solid-State Circuits, 46 (2011), 1. Google Scholar |
[18] |
A. Lempel and H. Greenberger, Families of sequence with optimal Hamming correlation properties,, IEEE Trans. Inf. Theory, 20 (1974), 90.
|
[19] |
W. P. Ma and S. H. Sun, New designs of frequency hopping sequences with low hit zone,, Des. Codes Crypt., 60 (2010), 145.
doi: 10.1007/s10623-010-9422-8. |
[20] |
X. H. Niu, D. Y. Peng and Z. C. Zhou, New classes of optimal LHZ FHS with new parameters,, in, (2011), 10. Google Scholar |
[21] |
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency hopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149.
doi: 10.1109/TIT.2004.833362. |
[22] |
D. Y. Peng, P. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone,, Sci. China Ser. F, 49 (2006), 1.
doi: 10.1007/s11432-006-0208-6. |
[23] |
H. Shao and N. Beaulieu, Direct sequence and time-hopping sequence designs for narrow band interference mitigation in impulse radio UWB systems,, IEEE Trans. Commun., 59 (2011), 1957. Google Scholar |
[24] |
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, "Spread Spectrum Communications Handbook,'', McGraw-Hill, (1994). Google Scholar |
[25] |
P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings,, IEEE Trans. Inf. Theory, 44 (1998), 1492.
doi: 10.1109/18.681324. |
[26] |
P. Udaya and X. Tang, Low correlation zone sequences from interleaved construction,, IEICE Trans. Fund., 93-A (2010), 2220. Google Scholar |
[27] |
X. N. Wang and P. Z. Fan, A class of frequency hopping sequences with no hit zone,, in, (2003), 896. Google Scholar |
[28] |
W. X. Ye and P. Z. Fan, Two classes of frequency hopping sequences with no-hit zone,, in, (2003), 304. Google Scholar |
[29] |
W. X. Ye and P. Z. Fan, Construction of frequency hopping sequences with no hit zone,, J. Electronics (China), 24 (2007), 305.
doi: 10.1007/s11767-005-0202-y. |
[30] |
W. X. Ye, P. Z. Fan and E. M. Gabidulin, Construction of non-repeating frequency-hopping sequences with no-hit zone,, Electronics Letters, 42 (2006), 681.
doi: 10.1049/el:20060775. |
[31] |
Q. Zeng, H. S. Li, Z. H. Zhang, et al., A frequency-hopping based communication infrastructure for wireless metering in smart grid,, in, (2011), 23. Google Scholar |
[32] |
Z. C. Zhou, Z. Pan and X. H. Tang, New families of optimal zero correlation zone sequences based on interleaved technique and perfect sequences,, IEICE Trans. Fund., 91 (2008), 3691. Google Scholar |
[33] |
Z. C. Zhou, X. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique,, IEEE Trans. Inf. Theory, 54 (2008), 4267.
doi: 10.1109/TIT.2008.928256. |
show all references
References:
[1] |
W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139.
doi: 10.1109/TIT.2004.842708. |
[2] |
J. H. Chung, Y. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving technique,, IEEE Trans. Inf. Theory, 55 (2009), 5783.
doi: 10.1109/TIT.2009.2032742. |
[3] |
J. H. Chung and K. Yang, Optimal frequency-hopping sequences with new parameters,, IEEE Trans. Inf. Theory, 56 (2010), 1685.
doi: 10.1109/TIT.2010.2040888. |
[4] |
C. Ding, R. Fuji-Hara, Y. Fujiwara, et al., Sets of frequency hopping sequences: Bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297.
doi: 10.1109/TIT.2009.2021366. |
[5] |
C. Ding, T. Helleseth and H. Martinsen, New families of binary sequences with optimal three-level autocorrelation,, IEEE Trans. Inf. Theory, 47 (2001), 428.
doi: 10.1109/18.904555. |
[6] |
C. Ding, M. J. Moisio and J. Yuan, Algebraic constructions of optimal frequency hopping sequences,, IEEE Trans. Inf. Theory, 53 (2007), 2606.
doi: 10.1109/TIT.2007.899545. |
[7] |
C. Ding and J. Yin, Sets of optimal frequency-hopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741.
doi: 10.1109/TIT.2008.926410. |
[8] |
P. Z. Fan and M. Darnell, "Sequence Design for Communications Applications,'', RSP-John Wiley Sons Inc., (1996). Google Scholar |
[9] |
P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency hopping CDMA systems,, IEEE Trans. Wir. Commun., 4 (2005), 2836. Google Scholar |
[10] |
R. Fuji-Hara, Y. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach,, IEEE Trans. Inf. Theory, 50 (2004), 2408.
doi: 10.1109/TIT.2004.834783. |
[11] |
G. Ge, R. Fuji-Hara and Y. Miao, Further combinatorial constructions for optimal frequency hopping sequences,, J. Combin. Theory Ser. A, 113 (2006), 1699.
doi: 10.1016/j.jcta.2006.03.019. |
[12] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and crosscorrelation properties,, IEEE Trans. Inf. Theory, 55 (2009), 867.
doi: 10.1109/TIT.2008.2009856. |
[13] |
G. Gong, Theory and applications of q-ary interleaved sequences,, IEEE Trans. Inf. Theory, 41 (1995), 400.
doi: 10.1109/18.370141. |
[14] |
G. Gong, New designs for signal sets with low cross correlation, balance property and large linear span: GF(p) case,, IEEE Trans. Inf. Theory, 48 (2002), 2847.
doi: 10.1109/TIT.2002.804044. |
[15] |
S. Hong, C. Seol and K. Cheun, Performance of soft decision decoded synchronous FHSS multiple access networks using MFSK modulation under rayleigh fading,, IEEE Trans. Commun., 59 (2011), 1066. Google Scholar |
[16] |
H. D. Jia, D. Yuan, D. Y. Peng, et al., On a general class of quadratic hopping sequences,, Sci. China Ser. F, 12 (2008), 2101.
doi: 10.1007/s11432-008-0136-8. |
[17] |
N. R. Lanka, S. A. Patnaik and R. A. Harjani, Frequency-hopped quadrature frequency synthesizer in 0.13-$\mu$m technology,, IEEE J. Solid-State Circuits, 46 (2011), 1. Google Scholar |
[18] |
A. Lempel and H. Greenberger, Families of sequence with optimal Hamming correlation properties,, IEEE Trans. Inf. Theory, 20 (1974), 90.
|
[19] |
W. P. Ma and S. H. Sun, New designs of frequency hopping sequences with low hit zone,, Des. Codes Crypt., 60 (2010), 145.
doi: 10.1007/s10623-010-9422-8. |
[20] |
X. H. Niu, D. Y. Peng and Z. C. Zhou, New classes of optimal LHZ FHS with new parameters,, in, (2011), 10. Google Scholar |
[21] |
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency hopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149.
doi: 10.1109/TIT.2004.833362. |
[22] |
D. Y. Peng, P. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone,, Sci. China Ser. F, 49 (2006), 1.
doi: 10.1007/s11432-006-0208-6. |
[23] |
H. Shao and N. Beaulieu, Direct sequence and time-hopping sequence designs for narrow band interference mitigation in impulse radio UWB systems,, IEEE Trans. Commun., 59 (2011), 1957. Google Scholar |
[24] |
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, "Spread Spectrum Communications Handbook,'', McGraw-Hill, (1994). Google Scholar |
[25] |
P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings,, IEEE Trans. Inf. Theory, 44 (1998), 1492.
doi: 10.1109/18.681324. |
[26] |
P. Udaya and X. Tang, Low correlation zone sequences from interleaved construction,, IEICE Trans. Fund., 93-A (2010), 2220. Google Scholar |
[27] |
X. N. Wang and P. Z. Fan, A class of frequency hopping sequences with no hit zone,, in, (2003), 896. Google Scholar |
[28] |
W. X. Ye and P. Z. Fan, Two classes of frequency hopping sequences with no-hit zone,, in, (2003), 304. Google Scholar |
[29] |
W. X. Ye and P. Z. Fan, Construction of frequency hopping sequences with no hit zone,, J. Electronics (China), 24 (2007), 305.
doi: 10.1007/s11767-005-0202-y. |
[30] |
W. X. Ye, P. Z. Fan and E. M. Gabidulin, Construction of non-repeating frequency-hopping sequences with no-hit zone,, Electronics Letters, 42 (2006), 681.
doi: 10.1049/el:20060775. |
[31] |
Q. Zeng, H. S. Li, Z. H. Zhang, et al., A frequency-hopping based communication infrastructure for wireless metering in smart grid,, in, (2011), 23. Google Scholar |
[32] |
Z. C. Zhou, Z. Pan and X. H. Tang, New families of optimal zero correlation zone sequences based on interleaved technique and perfect sequences,, IEICE Trans. Fund., 91 (2008), 3691. Google Scholar |
[33] |
Z. C. Zhou, X. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique,, IEEE Trans. Inf. Theory, 54 (2008), 4267.
doi: 10.1109/TIT.2008.928256. |
[1] |
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004 |
[2] |
Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009 |
[3] |
Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020031 |
[4] |
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359 |
[5] |
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55 |
[6] |
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199 |
[7] |
Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91 |
[8] |
Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024 |
[9] |
Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037 |
[10] |
Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 1-9. doi: 10.3934/amc.2020001 |
[11] |
Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012 |
[12] |
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029 |
[13] |
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Z-complementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237-247. doi: 10.3934/amc.2012.6.237 |
[14] |
Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024 |
[15] |
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223 |
[16] |
Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671-691. doi: 10.3934/amc.2017049 |
[17] |
Zhenyu Zhang, Lijia Ge, Fanxin Zeng, Guixin Xuan. Zero correlation zone sequence set with inter-group orthogonal and inter-subgroup complementary properties. Advances in Mathematics of Communications, 2015, 9 (1) : 9-21. doi: 10.3934/amc.2015.9.9 |
[18] |
H. W. Broer, Renato Vitolo. Dynamical systems modeling of low-frequency variability in low-order atmospheric models. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 401-419. doi: 10.3934/dcdsb.2008.10.401 |
[19] |
Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209 |
[20] |
Zilong Wang, Guang Gong, Rongquan Feng. A generalized construction of OFDM $M$-QAM sequences with low peak-to-average power ratio. Advances in Mathematics of Communications, 2009, 3 (4) : 421-428. doi: 10.3934/amc.2009.3.421 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]