-
Previous Article
On the distribution of auto-correlation value of balanced Boolean functions
- AMC Home
- This Issue
-
Next Article
Average complexities of access structures on five participants
A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic
1. | Department of Mathematics and Informatics, Perugia University, Perugia, 06123 |
2. | Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences, GSP-4, Moscow, 127994, Russian Federation |
References:
[1] |
A. H. Ali, J. W. P. Hirschfeld and H. Kaneta, The automorphism group of a complete $(q-1)$-arc in $PG(2,q)$,, J. Combin. Des., 2 (1994), 131.
doi: 10.1002/jcd.3180020304. |
[2] |
D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete arcs in $PG(2,q)$,, Discrete Math., 312 (2012), 680.
doi: 10.1016/j.disc.2011.07.002. |
[3] |
D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane,, J. Geom., 104 (2013), 11.
doi: 10.1007/s00022-013-0154-6. |
[4] |
D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, The minimum order of complete caps in $PG(4,4)$,, Adv. Math. Commun., 5 (2011), 37.
doi: 10.3934/amc.2011.5.37. |
[5] |
D. Bartoli, G. Faina, S. Marcugini, F. Pambianco and A. A. Davydov, A new algorithm and a new type of estimate for the smallest size of complete arcs in $PG(2,q)$,, Electron. Notes Discrete Math., 40 (2013), 27. Google Scholar |
[6] |
D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in $PG(4,4)$,, J. Combin. Des., 20 (2012), 448.
doi: 10.1002/jcd.21321. |
[7] |
K. Coolsaet and H. Sticker, Arcs with large conical subsets,, Electron. J. Combin., 17 (2010).
|
[8] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, Computer search in projective planes for the sizes of complete arcs,, J. Geom., 82 (2005), 50.
doi: 10.1007/s00022-004-1719-1. |
[9] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On the spectrum of sizes of complete caps in projective spaces $PG(n,q)$ of small dimension,, in, (2008), 57. Google Scholar |
[10] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$,, J. Geom., 94 (2009), 31.
doi: 10.1007/s00022-009-0009-3. |
[11] |
A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces,, Adv. Math. Commun., 5 (2011), 119.
doi: 10.3934/amc.2011.5.119. |
[12] |
A. A. Davydov, S. Marcugini and F. Pambianco, Minimal 1-saturating sets and complete caps in binary projective spaces,, J. Combin. Theory Ser. A, 113 (2006), 647.
doi: 10.1016/j.jcta.2005.06.003. |
[13] |
A. A. Davydov, S. Marcugini and F. Pambianco, Complete $(q^{2+q+8)}/2$-caps in the spaces $PG(3,q),$ $q\equiv 2$ $(mod$ $3)$ an odd prime, and a complete 20-cap in $PG(3,5)$,, Des. Codes Cryptogr., 50 (2009), 359.
doi: 10.1007/s10623-008-9237-z. |
[14] |
A. A. Davydov, S. Marcugini and F. Pambianco, A geometric construction of complete arcs sharing $(q+3)/2$ points with a conic,, in, (2010), 109. Google Scholar |
[15] |
G. Faina and F. Pambianco, On the spectrum of the values $k$ for which a complete $k$-cap in $PG(n,q)$ exists,, J. Geom., 62 (1998), 84.
doi: 10.1007/BF01237602. |
[16] |
V. Giordano, Arcs in cyclic affine planes,, Innov. Incidence Geom., 6-7 (2009), 6.
|
[17] |
J. W. P. Hirschfeld, "Projective Geometries over Finite Fields," $2^{nd}$ edition,, Clarendon Press, (1998).
|
[18] |
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, J. Statist. Plann. Inference, 72 (1998), 355.
doi: 10.1016/S0378-3758(98)00043-3. |
[19] |
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite geometry: update 2001,, in, (2001), 201.
doi: 10.1007/978-1-4613-0283-4_13. |
[20] |
G. Korchmáros and A. Sonnino, Complete arcs arising from conics,, Discrete Math., 267 (2003), 181.
doi: 10.1016/S0012-365X(02)00613-1. |
[21] |
G. Korchmáros and A. Sonnino, On arcs sharing the maximum number of points with an oval in a Desarguesian plane of odd order,, J. Combin. Des., 18 (2010), 25.
doi: 10.1002/jcd.20220. |
[22] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correctig Codes,'', North-Holland, (1977).
|
[23] |
S. Marcugini, A. Milani and F. Pambianco, Maximal $(n,3)$-arcs in $PG(2,13)$,, Discrete Math., 294 (2005), 139.
doi: 10.1016/j.disc.2004.04.043. |
[24] |
F. Pambianco, D. Bartoli, G. Faina and S. Marcugini, Classification of the smallest minimal 1-saturating sets in $PG(2,q)$, $q\leq 23$,, Electron. Notes Discrete Math., 40 (2013), 229. Google Scholar |
[25] |
G. Pellegrino, Un'osservazione sul problema dei $k$-archi completi in $S_{2,q}$, con $q\equiv 1 (mod$ $4)$,, Atti Accad. Naz. Lincei Rend., 63 (1977), 33. Google Scholar |
[26] |
G. Pellegrino, Sugli archi completi dei piani $PG(2,q)$, con $q$ dispari, contenenti $(q+3)/2$ punti di una conica,, Rend. Mat., 12 (1992), 649. Google Scholar |
[27] |
L. Storme, Finite geometry,, in, (2006), 702. Google Scholar |
show all references
References:
[1] |
A. H. Ali, J. W. P. Hirschfeld and H. Kaneta, The automorphism group of a complete $(q-1)$-arc in $PG(2,q)$,, J. Combin. Des., 2 (1994), 131.
doi: 10.1002/jcd.3180020304. |
[2] |
D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete arcs in $PG(2,q)$,, Discrete Math., 312 (2012), 680.
doi: 10.1016/j.disc.2011.07.002. |
[3] |
D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane,, J. Geom., 104 (2013), 11.
doi: 10.1007/s00022-013-0154-6. |
[4] |
D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, The minimum order of complete caps in $PG(4,4)$,, Adv. Math. Commun., 5 (2011), 37.
doi: 10.3934/amc.2011.5.37. |
[5] |
D. Bartoli, G. Faina, S. Marcugini, F. Pambianco and A. A. Davydov, A new algorithm and a new type of estimate for the smallest size of complete arcs in $PG(2,q)$,, Electron. Notes Discrete Math., 40 (2013), 27. Google Scholar |
[6] |
D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in $PG(4,4)$,, J. Combin. Des., 20 (2012), 448.
doi: 10.1002/jcd.21321. |
[7] |
K. Coolsaet and H. Sticker, Arcs with large conical subsets,, Electron. J. Combin., 17 (2010).
|
[8] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, Computer search in projective planes for the sizes of complete arcs,, J. Geom., 82 (2005), 50.
doi: 10.1007/s00022-004-1719-1. |
[9] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On the spectrum of sizes of complete caps in projective spaces $PG(n,q)$ of small dimension,, in, (2008), 57. Google Scholar |
[10] |
A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$,, J. Geom., 94 (2009), 31.
doi: 10.1007/s00022-009-0009-3. |
[11] |
A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces,, Adv. Math. Commun., 5 (2011), 119.
doi: 10.3934/amc.2011.5.119. |
[12] |
A. A. Davydov, S. Marcugini and F. Pambianco, Minimal 1-saturating sets and complete caps in binary projective spaces,, J. Combin. Theory Ser. A, 113 (2006), 647.
doi: 10.1016/j.jcta.2005.06.003. |
[13] |
A. A. Davydov, S. Marcugini and F. Pambianco, Complete $(q^{2+q+8)}/2$-caps in the spaces $PG(3,q),$ $q\equiv 2$ $(mod$ $3)$ an odd prime, and a complete 20-cap in $PG(3,5)$,, Des. Codes Cryptogr., 50 (2009), 359.
doi: 10.1007/s10623-008-9237-z. |
[14] |
A. A. Davydov, S. Marcugini and F. Pambianco, A geometric construction of complete arcs sharing $(q+3)/2$ points with a conic,, in, (2010), 109. Google Scholar |
[15] |
G. Faina and F. Pambianco, On the spectrum of the values $k$ for which a complete $k$-cap in $PG(n,q)$ exists,, J. Geom., 62 (1998), 84.
doi: 10.1007/BF01237602. |
[16] |
V. Giordano, Arcs in cyclic affine planes,, Innov. Incidence Geom., 6-7 (2009), 6.
|
[17] |
J. W. P. Hirschfeld, "Projective Geometries over Finite Fields," $2^{nd}$ edition,, Clarendon Press, (1998).
|
[18] |
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces,, J. Statist. Plann. Inference, 72 (1998), 355.
doi: 10.1016/S0378-3758(98)00043-3. |
[19] |
J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite geometry: update 2001,, in, (2001), 201.
doi: 10.1007/978-1-4613-0283-4_13. |
[20] |
G. Korchmáros and A. Sonnino, Complete arcs arising from conics,, Discrete Math., 267 (2003), 181.
doi: 10.1016/S0012-365X(02)00613-1. |
[21] |
G. Korchmáros and A. Sonnino, On arcs sharing the maximum number of points with an oval in a Desarguesian plane of odd order,, J. Combin. Des., 18 (2010), 25.
doi: 10.1002/jcd.20220. |
[22] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correctig Codes,'', North-Holland, (1977).
|
[23] |
S. Marcugini, A. Milani and F. Pambianco, Maximal $(n,3)$-arcs in $PG(2,13)$,, Discrete Math., 294 (2005), 139.
doi: 10.1016/j.disc.2004.04.043. |
[24] |
F. Pambianco, D. Bartoli, G. Faina and S. Marcugini, Classification of the smallest minimal 1-saturating sets in $PG(2,q)$, $q\leq 23$,, Electron. Notes Discrete Math., 40 (2013), 229. Google Scholar |
[25] |
G. Pellegrino, Un'osservazione sul problema dei $k$-archi completi in $S_{2,q}$, con $q\equiv 1 (mod$ $4)$,, Atti Accad. Naz. Lincei Rend., 63 (1977), 33. Google Scholar |
[26] |
G. Pellegrino, Sugli archi completi dei piani $PG(2,q)$, con $q$ dispari, contenenti $(q+3)/2$ punti di una conica,, Rend. Mat., 12 (1992), 649. Google Scholar |
[27] |
L. Storme, Finite geometry,, in, (2006), 702. Google Scholar |
[1] |
Thomas Honold, Ivan Landjev. The dual construction for arcs in projective Hjelmslev spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 11-21. doi: 10.3934/amc.2011.5.11 |
[2] |
Michael Kiermaier, Matthias Koch, Sascha Kurz. $2$-arcs of maximal size in the affine and the projective Hjelmslev plane over $\mathbb Z$25. Advances in Mathematics of Communications, 2011, 5 (2) : 287-301. doi: 10.3934/amc.2011.5.287 |
[3] |
Ivan Landjev, Assia Rousseva. Characterization of some optimal arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 317-331. doi: 10.3934/amc.2011.5.317 |
[4] |
Hayden Schaeffer. Active arcs and contours. Inverse Problems & Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845 |
[5] |
Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65 |
[6] |
Anton Betten, Eun Ju Cheon, Seon Jeong Kim, Tatsuya Maruta. The classification of $(42,6)_8$ arcs. Advances in Mathematics of Communications, 2011, 5 (2) : 209-223. doi: 10.3934/amc.2011.5.209 |
[7] |
Jiamin Zhu, Emmanuel Trélat, Max Cerf. Planar tilting maneuver of a spacecraft: Singular arcs in the minimum time problem and chattering. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1347-1388. doi: 10.3934/dcdsb.2016.21.1347 |
[8] |
Ayako Kikui, Tatsuya Maruta, Yuri Yoshida. On the uniqueness of (48,6)-arcs in PG(2,9). Advances in Mathematics of Communications, 2009, 3 (1) : 29-34. doi: 10.3934/amc.2009.3.29 |
[9] |
Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029 |
[10] |
Francisco R. Ruiz del Portal. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2379-2390. doi: 10.3934/dcdss.2019149 |
[11] |
Sabyasachi Mukherjee. Parabolic arcs of the multicorns: Real-analyticity of Hausdorff dimension, and singularities of $\mathrm{Per}_n(1)$ curves. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2565-2588. doi: 10.3934/dcds.2017110 |
[12] |
Todd A. Drumm and William M. Goldman. Crooked planes. Electronic Research Announcements, 1995, 1: 10-17. |
[13] |
Xin Liu. Compressible viscous flows in a symmetric domain with complete slip boundary: The nonlinear stability of uniformly rotating states with small angular velocities. Communications on Pure & Applied Analysis, 2019, 18 (2) : 751-794. doi: 10.3934/cpaa.2019037 |
[14] |
K. H. Kim and F. W. Roush. The Williams conjecture is false for irreducible subshifts. Electronic Research Announcements, 1997, 3: 105-109. |
[15] |
Dubi Kelmer. Quantum ergodicity for products of hyperbolic planes. Journal of Modern Dynamics, 2008, 2 (2) : 287-313. doi: 10.3934/jmd.2008.2.287 |
[16] |
Osama Khalil. Geodesic planes in geometrically finite manifolds. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 881-903. doi: 10.3934/dcds.2019037 |
[17] |
Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 |
[18] |
Thierry Coulbois. Fractal trees for irreducible automorphisms of free groups. Journal of Modern Dynamics, 2010, 4 (2) : 359-391. doi: 10.3934/jmd.2010.4.359 |
[19] |
Kristian Bjerklöv, Russell Johnson. Minimal subsets of projective flows. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 493-516. doi: 10.3934/dcdsb.2008.9.493 |
[20] |
Jungkai A. Chen and Meng Chen. On projective threefolds of general type. Electronic Research Announcements, 2007, 14: 69-73. doi: 10.3934/era.2007.14.69 |
2018 Impact Factor: 0.879
Tools
Metrics
Other articles
by authors
[Back to Top]