\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A 3-cycle construction of complete arcs sharing $(q+3)/2$ points with a conic

Abstract Related Papers Cited by
  • In the projective plane $PG(2,q),$ $q\equiv 2$ $(\bmod~3)$ odd prime power, $ q\geq 11,$ an explicit construction of $\frac{1}{2}(q+7)$-arcs sharing $ \frac{1}{2}(q+3)$ points with an irreducible conic is considered. The construction is based on 3-orbits of some projectivity, called 3-cycles. For every $q,$ variants of the construction give non-equivalent arcs. It allows us to obtain complete $\frac{1}{ 2}(q+7)$-arcs for $q\leq 4523.$ Moreover, for $q=17,59$ there exist variants that are incomplete arcs. Completing these variants we obtained complete $( \frac{1}{2}(q+3)+\delta)$-arcs with $ \delta =4,$ $q=17,$ and $\delta =3,$ $q=59$; a description of them as union of some symmetrical objects is given.
    Mathematics Subject Classification: Primary: 51E21, 51E22; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. H. Ali, J. W. P. Hirschfeld and H. Kaneta, The automorphism group of a complete $(q-1)$-arc in $PG(2,q)$, J. Combin. Des., 2 (1994), 131-145.doi: 10.1002/jcd.3180020304.

    [2]

    D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete arcs in $PG(2,q)$, Discrete Math., 312 (2012), 680-698.doi: 10.1016/j.disc.2011.07.002.

    [3]

    D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane, J. Geom., 104 (2013), 11-43.doi: 10.1007/s00022-013-0154-6.

    [4]

    D. Bartoli, A. A. Davydov, S. Marcugini and F. Pambianco, The minimum order of complete caps in $PG(4,4)$, Adv. Math. Commun., 5 (2011), 37-40.doi: 10.3934/amc.2011.5.37.

    [5]

    D. Bartoli, G. Faina, S. Marcugini, F. Pambianco and A. A. Davydov, A new algorithm and a new type of estimate for the smallest size of complete arcs in $PG(2,q)$, Electron. Notes Discrete Math., 40 (2013), 27-31.

    [6]

    D. Bartoli, S. Marcugini and F. Pambianco, New quantum caps in $PG(4,4)$, J. Combin. Des., 20 (2012), 448-466.doi: 10.1002/jcd.21321.

    [7]

    K. Coolsaet and H. Sticker, Arcs with large conical subsets, Electron. J. Combin., 17 (2010), $\#$R112.

    [8]

    A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, Computer search in projective planes for the sizes of complete arcs, J. Geom., 82 (2005), 50-62.doi: 10.1007/s00022-004-1719-1.

    [9]

    A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On the spectrum of sizes of complete caps in projective spaces $PG(n,q)$ of small dimension, in "Proc. XI Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2008,'' Pamporovo, Bulgaria, (2008), 57-62.

    [10]

    A. A. Davydov, G. Faina, S. Marcugini and F. Pambianco, On sizes of complete caps in projective spaces $PG(n,q)$ and arcs in planes $PG(2,q)$, J. Geom., 94 (2009), 31-58.doi: 10.1007/s00022-009-0009-3.

    [11]

    A. A. Davydov, M. Giulietti, S. Marcugini and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Adv. Math. Commun., 5 (2011), 119-147.doi: 10.3934/amc.2011.5.119.

    [12]

    A. A. Davydov, S. Marcugini and F. Pambianco, Minimal 1-saturating sets and complete caps in binary projective spaces, J. Combin. Theory Ser. A, 113 (2006), 647-663.doi: 10.1016/j.jcta.2005.06.003.

    [13]

    A. A. Davydov, S. Marcugini and F. Pambianco, Complete $(q^{2+q+8)}/2$-caps in the spaces $PG(3,q),$ $q\equiv 2$ $(mod$ $3)$ an odd prime, and a complete 20-cap in $PG(3,5)$, Des. Codes Cryptogr., 50 (2009), 359-372.doi: 10.1007/s10623-008-9237-z.

    [14]

    A. A. Davydov, S. Marcugini and F. Pambianco, A geometric construction of complete arcs sharing $(q+3)/2$ points with a conic, in "Proc. XII Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2010,'' Novosibirsk, Russia, (2010), 109-115.

    [15]

    G. Faina and F. Pambianco, On the spectrum of the values $k$ for which a complete $k$-cap in $PG(n,q)$ exists, J. Geom., 62 (1998), 84-98.doi: 10.1007/BF01237602.

    [16]

    V. Giordano, Arcs in cyclic affine planes, Innov. Incidence Geom., 6-7 (2009), 203-209.

    [17]

    J. W. P. Hirschfeld, "Projective Geometries over Finite Fields," $2^{nd}$ edition, Clarendon Press, Oxford, 1998.

    [18]

    J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Plann. Inference, 72 (1998), 355-380.doi: 10.1016/S0378-3758(98)00043-3.

    [19]

    J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite geometry: update 2001, in "Finite Geometries'' (eds. A. Blokhuis, J.W.P. Hirschfeld, D. Jungnickel and J.A. Thas), Kluwer, (2001), 201-246.doi: 10.1007/978-1-4613-0283-4_13.

    [20]

    G. Korchmáros and A. Sonnino, Complete arcs arising from conics, Discrete Math., 267 (2003), 181-187.doi: 10.1016/S0012-365X(02)00613-1.

    [21]

    G. Korchmáros and A. Sonnino, On arcs sharing the maximum number of points with an oval in a Desarguesian plane of odd order, J. Combin. Des., 18 (2010), 25-47.doi: 10.1002/jcd.20220.

    [22]

    F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correctig Codes,'' North-Holland, Amsterdam, The Netherlands, 1977.

    [23]

    S. Marcugini, A. Milani and F. Pambianco, Maximal $(n,3)$-arcs in $PG(2,13)$, Discrete Math., 294 (2005), 139-145.doi: 10.1016/j.disc.2004.04.043.

    [24]

    F. Pambianco, D. Bartoli, G. Faina and S. Marcugini, Classification of the smallest minimal 1-saturating sets in $PG(2,q)$, $q\leq 23$, Electron. Notes Discrete Math., 40 (2013), 229-233.

    [25]

    G. Pellegrino, Un'osservazione sul problema dei $k$-archi completi in $S_{2,q}$, con $q\equiv 1 (mod$ $4)$, Atti Accad. Naz. Lincei Rend., 63 (1977), 33-44.

    [26]

    G. Pellegrino, Sugli archi completi dei piani $PG(2,q)$, con $q$ dispari, contenenti $(q+3)/2$ punti di una conica, Rend. Mat., 12 (1992), 649-674.

    [27]

    L. Storme, Finite geometry, in "The CRC Handbook of Combinatorial Designs'' (eds. C.J. Colbourn and J. Dinitz), $2^{nd}$ edition, CRC Press, Boca Raton, (2006), 702-729.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return