- Previous Article
- AMC Home
- This Issue
-
Next Article
On the distribution of auto-correlation value of balanced Boolean functions
On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes
1. | Department of Mathematics and Statistics, Loyola University, Chicago, IL 60660, United States |
References:
[1] |
I. M. Araújo, et al., GAP Reference Manual,, The GAP Group, ().
|
[2] |
E. F. Assmus, Jr., H. F. Mattson, Jr. and R. J. Turyn, Research to develop the algebraic theory of codes, Report AFCRL-67-0365, Air Force Cambridge Res. Labs., Bedford, MA, 1967. |
[3] |
C. Bachoc and P. Gaborit, On extremal additive $GF(4)$-codes of lengths $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 225-272.
doi: 10.5802/jtnb.278. |
[4] |
J. Bierbrauer, Cyclic additive and quantum stabilizer codes, in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283.
doi: 10.1007/978-3-540-73074-3_21. |
[5] |
J. Bierbrauer and Y. Edel, Quantum twisted codes, J. Combin. Des., 8 (2000), 174-188.
doi: 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T. |
[6] |
G. Birkhoff and S. MacLane, "A Survey of Modern Algebra,'' $4^{th}$ edition, MacMillan Publishing, New York, 1977. |
[7] |
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387.
doi: 10.1109/18.681315. |
[8] |
L. E. Danielsen, Graph-based classification of self-dual additive codes over finite fields, Adv. Math. Commun., 3 (2009), 329-348.
doi: 10.3934/amc.2009.3.329. |
[9] |
L. E. Danielsen, On the classification of Hermitian self-dual additive codes over $GF(9)$, IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511.
doi: 10.1109/TIT.2012.2196255. |
[10] |
L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over $GF(4)$ of length up to $12$, J. Comb. Theory Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004. |
[11] |
B. K. Dey and B. S. Rajan, $\mathbb F_q$-linear cyclic codes over $\mathbb F_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.
doi: 10.1007/s10623-003-4196-x. |
[12] |
L. Dornhoff, "Group Representation Theory (Part A),'' Marcel Dekker, New York, 1971. |
[13] |
C. Drees, M. Epkenhans and M. Krüskemper, On the computation of the trace form of some Galois extensions, J. Algebra, 192 (1997), 209-234.
doi: 10.1006/jabr.1996.6939. |
[14] |
J. E. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of extremal even formally self-dual codes, Des. Codes Cryptogr., 18 (1999), 125-148.
doi: 10.1023/A:1008389220478. |
[15] |
J. E. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of extremal even formally self-dual codes of lengths $20$ and $22$, Discrete Appl. Math., 111 (2001), 75-86.
doi: 10.1016/S0166-218X(00)00345-0. |
[16] |
P. Gaborit, W. C. Huffman, J.-L. Kim and V. Pless, On additive $GF(4)$ codes, in "Codes and Association Schemes: DIMACS Workshop'' (eds. A. Barg and S. Litsyn), Amer. Math. Soc., Providence, (2001), 135-149. |
[17] |
A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes Congrés Internl. de Mathématique, Gauthier-Villars, Paris, (1971), 211-215. |
[18] |
G. Höhn, Self-dual codes over the Kleinian four group, Math. Ann., 327 (2003), 227-255.
doi: 10.1007/s00208-003-0440-y. |
[19] |
S. K. Houghten, C. W. H. Lam and L. H. Thiel, Construction of $(48,24,12)$ doubly-even self-dual codes, Congr. Numer., 103 (1994), 41-53. |
[20] |
S. K. Houghten, C. W. H. Lam, L. H. Thiel and J. A. Parker, The extended quadratic residue code is the only $(48,24,12)$ self-dual doubly-even code, IEEE Trans. Inform. Theory, IT-49 (2003), 53-59.
doi: 10.1109/TIT.2002.806146. |
[21] |
W. C. Huffman, Additive cyclic codes over $\mathbb F_4$, Adv. Math. Commun., 1 (2007), 429-461.
doi: 10.3934/amc.2007.1.427. |
[22] |
W. C. Huffman, Additive cyclic codes over $\mathbb F_4$ of even length, Adv. Math. Commun., 2 (2008), 309-343.
doi: 10.3934/amc.2008.2.309. |
[23] |
W. C. Huffman, Cyclic $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes, Int. J. Inf. Coding Theory, 1 (2010), 249-284.
doi: 10.1504/IJICOT.2010.032543. |
[24] |
W. C. Huffman, Self-dual $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.
doi: 10.3934/amc.2013.7.57. |
[25] |
W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge University Press, Cambridge, 2003. |
[26] |
J.-L. Kim and X. Liu, A generalized Gleason-Pierce-Ward theorem, Des. Codes Cryptogr., 52 (2009), 363-380.
doi: 10.1007/s10623-009-9286-y. |
[27] |
J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves, Discrete Math., 308 (2008), 3115-3124.
doi: 10.1016/j.disc.2007.08.038. |
[28] |
H. Koch, Unimodular lattices and self-dual codes, in "Proc. Intern. Congress Math.,'' Amer. Math. Soc., Providence, (1987), 457-465. |
[29] |
T. Y. Lam, "The Algebraic Theory of Quadratic Forms,'' Reading MA: WA Benjamin, 1973. |
[30] |
F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J., 42 (1963), 79-94. |
[31] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' Elsevier, New York, 1977. |
[32] |
V. Pless, Power moment identities on weight distributions in error correcting codes, Inform. Control, 6 (1963), 147-152.
doi: 10.1016/S0019-9958(63)90189-X. |
[33] |
E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832.
doi: 10.1109/18.782103. |
[34] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294. |
[35] |
J. J. Rotman, "An Introduction to the Theory of Groups,'' $4^{th}$ edition, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4176-8. |
[36] |
N. J. A. Sloane, Relations between combinatorics and other parts of mathematics, Proc. Sympos. Pure Math., 34 (1979), 273-308. |
[37] |
D. E. Taylor, "The Geometry of the Classical Groups,'' Heldermann Verlag, Berlin, 1992. |
[38] |
H. N. Ward, Divisible codes, Arch. Math. (Basel), 36 (1981), 485-494.
doi: 10.1007/BF01223730. |
[39] |
H. N. Ward, Quadratic residue codes and divisibility, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 827-870. |
show all references
References:
[1] |
I. M. Araújo, et al., GAP Reference Manual,, The GAP Group, ().
|
[2] |
E. F. Assmus, Jr., H. F. Mattson, Jr. and R. J. Turyn, Research to develop the algebraic theory of codes, Report AFCRL-67-0365, Air Force Cambridge Res. Labs., Bedford, MA, 1967. |
[3] |
C. Bachoc and P. Gaborit, On extremal additive $GF(4)$-codes of lengths $10$ to $18$, J. Théorie Nombres Bordeaux, 12 (2000), 225-272.
doi: 10.5802/jtnb.278. |
[4] |
J. Bierbrauer, Cyclic additive and quantum stabilizer codes, in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283.
doi: 10.1007/978-3-540-73074-3_21. |
[5] |
J. Bierbrauer and Y. Edel, Quantum twisted codes, J. Combin. Des., 8 (2000), 174-188.
doi: 10.1002/(SICI)1520-6610(2000)8:3<174::AID-JCD3>3.0.CO;2-T. |
[6] |
G. Birkhoff and S. MacLane, "A Survey of Modern Algebra,'' $4^{th}$ edition, MacMillan Publishing, New York, 1977. |
[7] |
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387.
doi: 10.1109/18.681315. |
[8] |
L. E. Danielsen, Graph-based classification of self-dual additive codes over finite fields, Adv. Math. Commun., 3 (2009), 329-348.
doi: 10.3934/amc.2009.3.329. |
[9] |
L. E. Danielsen, On the classification of Hermitian self-dual additive codes over $GF(9)$, IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511.
doi: 10.1109/TIT.2012.2196255. |
[10] |
L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over $GF(4)$ of length up to $12$, J. Comb. Theory Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004. |
[11] |
B. K. Dey and B. S. Rajan, $\mathbb F_q$-linear cyclic codes over $\mathbb F_{q^m}$: DFT approach, Des. Codes Cryptogr., 34 (2005), 89-116.
doi: 10.1007/s10623-003-4196-x. |
[12] |
L. Dornhoff, "Group Representation Theory (Part A),'' Marcel Dekker, New York, 1971. |
[13] |
C. Drees, M. Epkenhans and M. Krüskemper, On the computation of the trace form of some Galois extensions, J. Algebra, 192 (1997), 209-234.
doi: 10.1006/jabr.1996.6939. |
[14] |
J. E. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of extremal even formally self-dual codes, Des. Codes Cryptogr., 18 (1999), 125-148.
doi: 10.1023/A:1008389220478. |
[15] |
J. E. Fields, P. Gaborit, W. C. Huffman and V. Pless, On the classification of extremal even formally self-dual codes of lengths $20$ and $22$, Discrete Appl. Math., 111 (2001), 75-86.
doi: 10.1016/S0166-218X(00)00345-0. |
[16] |
P. Gaborit, W. C. Huffman, J.-L. Kim and V. Pless, On additive $GF(4)$ codes, in "Codes and Association Schemes: DIMACS Workshop'' (eds. A. Barg and S. Litsyn), Amer. Math. Soc., Providence, (2001), 135-149. |
[17] |
A. M. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, Actes Congrés Internl. de Mathématique, Gauthier-Villars, Paris, (1971), 211-215. |
[18] |
G. Höhn, Self-dual codes over the Kleinian four group, Math. Ann., 327 (2003), 227-255.
doi: 10.1007/s00208-003-0440-y. |
[19] |
S. K. Houghten, C. W. H. Lam and L. H. Thiel, Construction of $(48,24,12)$ doubly-even self-dual codes, Congr. Numer., 103 (1994), 41-53. |
[20] |
S. K. Houghten, C. W. H. Lam, L. H. Thiel and J. A. Parker, The extended quadratic residue code is the only $(48,24,12)$ self-dual doubly-even code, IEEE Trans. Inform. Theory, IT-49 (2003), 53-59.
doi: 10.1109/TIT.2002.806146. |
[21] |
W. C. Huffman, Additive cyclic codes over $\mathbb F_4$, Adv. Math. Commun., 1 (2007), 429-461.
doi: 10.3934/amc.2007.1.427. |
[22] |
W. C. Huffman, Additive cyclic codes over $\mathbb F_4$ of even length, Adv. Math. Commun., 2 (2008), 309-343.
doi: 10.3934/amc.2008.2.309. |
[23] |
W. C. Huffman, Cyclic $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes, Int. J. Inf. Coding Theory, 1 (2010), 249-284.
doi: 10.1504/IJICOT.2010.032543. |
[24] |
W. C. Huffman, Self-dual $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes with an automorphism of prime order, Adv. Math. Commun., 7 (2013), 57-90.
doi: 10.3934/amc.2013.7.57. |
[25] |
W. C. Huffman and V. Pless, "Fundamentals of Error-Correcting Codes,'' Cambridge University Press, Cambridge, 2003. |
[26] |
J.-L. Kim and X. Liu, A generalized Gleason-Pierce-Ward theorem, Des. Codes Cryptogr., 52 (2009), 363-380.
doi: 10.1007/s10623-009-9286-y. |
[27] |
J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves, Discrete Math., 308 (2008), 3115-3124.
doi: 10.1016/j.disc.2007.08.038. |
[28] |
H. Koch, Unimodular lattices and self-dual codes, in "Proc. Intern. Congress Math.,'' Amer. Math. Soc., Providence, (1987), 457-465. |
[29] |
T. Y. Lam, "The Algebraic Theory of Quadratic Forms,'' Reading MA: WA Benjamin, 1973. |
[30] |
F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J., 42 (1963), 79-94. |
[31] |
F. J. MacWilliams and N. J. A. Sloane, "The Theory of Error-Correcting Codes,'' Elsevier, New York, 1977. |
[32] |
V. Pless, Power moment identities on weight distributions in error correcting codes, Inform. Control, 6 (1963), 147-152.
doi: 10.1016/S0019-9958(63)90189-X. |
[33] |
E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832.
doi: 10.1109/18.782103. |
[34] |
E. M. Rains and N. J. A. Sloane, Self-dual codes, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 177-294. |
[35] |
J. J. Rotman, "An Introduction to the Theory of Groups,'' $4^{th}$ edition, Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4176-8. |
[36] |
N. J. A. Sloane, Relations between combinatorics and other parts of mathematics, Proc. Sympos. Pure Math., 34 (1979), 273-308. |
[37] |
D. E. Taylor, "The Geometry of the Classical Groups,'' Heldermann Verlag, Berlin, 1992. |
[38] |
H. N. Ward, Divisible codes, Arch. Math. (Basel), 36 (1981), 485-494.
doi: 10.1007/BF01223730. |
[39] |
H. N. Ward, Quadratic residue codes and divisibility, in "Handbook of Coding Theory'' (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdam, (1998), 827-870. |
[1] |
Ziteng Huang, Weijun Fang, Fang-Wei Fu, Fengting Li. Generic constructions of MDS Euclidean self-dual codes via GRS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021059 |
[2] |
Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031 |
[3] |
Ilias S. Kotsireas, Christos Koukouvinos, Dimitris E. Simos. MDS and near-MDS self-dual codes over large prime fields. Advances in Mathematics of Communications, 2009, 3 (4) : 349-361. doi: 10.3934/amc.2009.3.349 |
[4] |
Padmapani Seneviratne, Martianus Frederic Ezerman. New quantum codes from metacirculant graphs via self-dual additive $\mathbb{F}_4$-codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021073 |
[5] |
Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229 |
[6] |
Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267 |
[7] |
Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047 |
[8] |
Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023 |
[9] |
Keita Ishizuka, Ken Saito. Construction for both self-dual codes and LCD codes. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2021070 |
[10] |
Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329 |
[11] |
Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014 |
[12] |
W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357 |
[13] |
Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251 |
[14] |
Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433 |
[15] |
Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23 |
[16] |
Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011 |
[17] |
Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393 |
[18] |
Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65 |
[19] |
Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311 |
[20] |
Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]