\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the dual of (non)-weakly regular bent functions and self-dual bent functions

Abstract / Introduction Related Papers Cited by
  • For weakly regular bent functions in odd characteristic the dual function is also bent. We analyse a recently introduced construction of non-weakly regular bent functions and show conditions under which their dual is bent as well. This leads to the definition of the class of dual-bent functions containing the class of weakly regular bent functions as a proper subclass. We analyse self-duality for bent functions in odd characteristic, and characterize quadratic self-dual bent functions. We construct non-weakly regular bent functions with and without a bent dual, and bent functions with a dual bent function of a different algebraic degree.
    Mathematics Subject Classification: Primary: 11T71, 94A60, 06E30; Secondary: 11T24.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Carlet, On the secondary constructions of resilient and bent functions, in Coding, Cryptography and Combinatorics, Birkhäuser Basel, 2004, 3-28.

    [2]

    C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.doi: 10.1023/A:1008344232130.

    [3]

    C. Carlet, L. E. Danielsen, M. G. Parker and P. Solé, Self-dual bent functions, Int. J. Inform. Coding Theory, 1 (2010), 384-399.doi: 10.1504/IJICOT.2010.032864.

    [4]

    C. Carlet, H. Dobbertin and G. Leander, Normal extensions of bent functions, IEEE Trans. Inform. Theory, 50 (2004), 2880-2885.doi: 10.1109/TIT.2004.836681.

    [5]

    A. Çeşmelioǧlu, G. McGuire and W. Meidl, A construction of weakly and non-weakly regular bent functions, J. Comb. Theory Ser. A, 119 (2012), 420-429.doi: 10.1016/j.jcta.2011.10.002.

    [6]

    A. Çeşmelioǧlu and W. Meidl, A construction of bent functions from plateaued functions, Des. Codes Cryptogr., 66 (2013), 231-242.doi: 10.1007/s10623-012-9686-2.

    [7]

    Y. M. Chee, Y. Tan and X. D. Zhang, Strongly regular graphs constructed from $p$-ary bent functions, J. Algebr. Comb., 34 (2011), 251-266.doi: 10.1007/s10801-010-0270-4.

    [8]

    Y. Edel and A. Pott, On the equivalence of nonlinear functions, in NATO Advanced Research Workshop on Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, Amsterdam, 2009, 87-103.

    [9]

    K. Garaschuk and P. Lisoněk, On ternary Kloosterman sums modulo 12, Finite Fields Appl., 14 (2008), 1083-1090.doi: 10.1016/j.ffa.2008.07.002.

    [10]

    F. Göloǧlu, G. McGuire and R. Moloney, Ternary Kloosterman sums modulo $18$ using Stickelberger's theorem, in Proceedings of SETA 2010 (eds. C. Carlet and A. Pott), Springer-Verlag, Berlin, 2010, 196-203.doi: 10.1007/978-3-642-15874-2_16.

    [11]

    T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 52 (2006), 2018-2032.doi: 10.1109/TIT.2006.872854.

    [12]

    T. Helleseth and A. Kholosha, New binomial bent functions over the finite fields of odd characteristic, IEEE Trans. Inform. Theory, 56 (2010), 4646-4652.doi: 10.1109/TIT.2010.2055130.

    [13]

    T. Helleseth and A. Kholosha, Crosscorrelation of m-sequences, exponential sums, bent functions and Jacobsthal sums, Cryptogr. Commun., 3 (2011), 281-291.doi: 10.1007/s12095-011-0048-0.

    [14]

    X. D. Hou, Classification of self dual quadratic bent functions, Des. Codes Cryptogr., 63 (2012), 183-198.doi: 10.1007/s10623-011-9544-7.

    [15]

    K. P. Kononen, M. J. Rinta-aho and K. O. Väänänen, On integer values of Kloosterman sums, IEEE Trans. Inform. Theory, 56 (2010), 4011-4013.doi: 10.1109/TIT.2010.2050806.

    [16]

    N. G. Leander, Monomial bent functions, IEEE Trans. Inform. Theory, 52 (2006), 738-743.doi: 10.1109/TIT.2005.862121.

    [17]

    R. Lidl and H. Niederreiter, Finite Fields, Second edition, Cambridge Univ. Press, Cambridge, 1997.

    [18]

    Y. Tan, A. Pott and T. Feng, Strongly regular graphs associated with ternary bent functions, J. Comb. Theory Ser. A, 117 (2010), 668-682.doi: 10.1016/j.jcta.2009.05.003.

    [19]

    Y. Tan, J. Yang and X. Zhang, A recursive approach to construct $p$-ary bent functions which are not weakly regular, in Proceedings of IEEE International Conference on Information Theory and Information Security, Beijing, 2010, 156-159.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return