Advanced Search
Article Contents
Article Contents


Abstract Related Papers Cited by
  • In this paper we introduce the notion of cyclic ($f(t),\sigma,\delta$)-codes for $f(t)\in A[t;\sigma,\delta]$. These codes generalize the $\theta$-codes as introduced by D. Boucher, F. Ulmer, W. Geiselmann [2]. We construct generic and control matrices for these codes. As a particular case the ($\sigma,\delta$)-$W$-code associated to a Wedderburn polynomial are defined and we show that their control matrices are given by generalized Vandermonde matrices. All the Wedderburn polynomials of $\mathbb F_q[t;\theta]$ are described and their control matrices are presented. A key role will be played by the pseudo-linear transformations.
    Mathematics Subject Classification: Primary: 94B05, 94B15; Secondary: 16S36.


    \begin{equation} \\ \end{equation}
  • [1]

    S. A. Amitsur, Derivations in simple rings, Proc. London Math. Soc., 3 (1957), 87-112.


    D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Appl. Algebra Engin. Commun. Comp., 18 (2007), 379-389.doi: 10.1007/s00200-007-0043-z.


    D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.doi: 10.3934/amc.2008.2.273.


    D. Boucher and F. UlmerLinear codes using skew polynomials with automorphisms and derivations, Des. Codes Cryptogr., to appear. doi: 10.1007/s10623-012-9704-4.


    J. Delenclos and A. Leroy, Noncommutative symmetric functions and W-polynomials, J. Algebra Appl., 6 (2007), 815-837.doi: 10.1142/S021949880700251X.


    M. Giesbrecht, Factoring in skew polynomial rings over finite fields, J. Symb. Comp., 26 (1998), 463-468.doi: 10.1006/jsco.1998.0224.


    N. Jacobson, On pseudo linear transformations, Ann. Math., 38 (1937), 484-507.doi: 10.2307/1968565.


    S. K. Jain and S. R. Nagpaul, Topics in Applied Abstract Algebra, AMS, 2005.


    T. Y. Lam and A. Leroy, Wedderburn polynomials over division rings, I, J. Pure Appl. Algebra, 186 (2004), 43-76.doi: 10.1016/S0022-4049(03)00125-7.


    T. Y. Lam, A. Leroy and A. Ozturk, Wedderburn polynomial over division rings, II, Contemp. Math., 456 (2008), 73-98.doi: 10.1090/conm/456/08885.


    A. Leroy, Pseudo-linear transformation and evaluation in Ore extension, Bull. Belg. Math. Soc., 2 (1995), 321-345.


    A. Leroy, Noncommutative polynomial maps, J. Algebra Appl., 11 (2012).doi: 10.1142/S0219498812500764.


    S. R. López-Permouth and S. Szabo, Convolutional codes with additional algebraic structures, J. Pure Appl. Algebra, (2012).doi: 10.1016/j.jpaa.2012.09.017.


    F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, North-Holland, Amsterdam, 1978.


    P. Solé, Codes over rings, in Proceeding of the CIMPA Summer School, Ankara, Turkey, 2008.doi: 10.1109/TIT.2013.2277721.


    P. Solé and O. Yemen, Binary quasi-cyclic codes of index 2 and skew polynomial rings, Finite Fields Appl., 18 (2012), 685-699.doi: 10.1016/j.ffa.2012.02.002.


    J. Wood, Code equivalence characterizes finite Frobenius rings, Proc. Amer. Math. Soc., 136 (2008), 699-706.doi: 10.1090/S0002-9939-07-09164-2.

  • 加载中

Article Metrics

HTML views() PDF downloads(68) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint