November  2013, 7(4): 503-510. doi: 10.3934/amc.2013.7.503

The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$

1. 

Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano Bicocca, 20125 Milan, Italy, Italy

2. 

Lehrstuhl D für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received  March 2013 Revised  July 2013 Published  October 2013

A computer calculation with $M$AGMA shows that there is no extremal self-dual binary code $\mathcal{C}$ of length $72$ whose automorphism group contains the symmetric group of degree $3$, the alternating group of degree $4$ or the dihedral group of order $8$. Combining this with the known results in the literature one obtains that $Aut(\mathcal{C})$ has order at most $5$ or is isomorphic to the elementary abelian group of order $8$.
Citation: Martino Borello, Francesca Dalla Volta, Gabriele Nebe. The automorphism group of a self-dual $[72,36,16]$ code does not contain $\mathcal S_3$, $\mathcal A_4$ or $D_8$. Advances in Mathematics of Communications, 2013, 7 (4) : 503-510. doi: 10.3934/amc.2013.7.503
References:
[1]

C. Aguilar Melchor and P. Gaborit, On the classification of extremal $[36,18,8]$ binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743.  doi: 10.1109/TIT.2008.928976.  Google Scholar

[2]

E. F. Assmuss and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

M. Borello, The automorphism group of a self-dual $[72,36,16]$ binary code does not contain elements of order $6$,, IEEE Trans. Inform. Theory, 58 (2012), 7240.  doi: 10.1109/TIT.2012.2211095.  Google Scholar

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symbol. Comput., 24 (1997), 235.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

S. Bouyuklieva, On the automorphisms of order $2$ with fixed points for the extremal self-dual codes of length $24m$,, Des. Codes Cryptogr., 25 (2002), 5.  doi: 10.1023/A:1012598832377.  Google Scholar

[6]

S. Bouyuklieva, On the automorphism group of a doubly even $(72,36,16)$ code,, IEEE Trans. Inform. Theory, 50 (2004), 544.  doi: 10.1109/TIT.2004.825252.  Google Scholar

[7]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12,, J. Combin. Theory Ser. A, 112 (2006), 1351.  doi: 10.1016/j.jcta.2005.12.004.  Google Scholar

[8]

T. Feulner and G. Nebe, The automorphism group of an extremal $[72,36,16]$ code does not contain $Z_7$, $Z_3\times Z_3$, or $D_{10}$,, IEEE Trans. Inform. Theory, 58 (2012), 6916.  doi: 10.1109/TIT.2012.2208176.  Google Scholar

[9]

W. C. Huffman, Automorphisms of codes with application to extremal doubly even codes of length $48$,, IEEE Trans. Inform. Theory, IT-28 (1982), 511.  doi: 10.1109/TIT.1982.1056499.  Google Scholar

[10]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[11]

G. Nebe, An extremal $[72,36,16]$ binary code has no automorphism group containing $Z_2\times Z_4$, $Q_8$, or $Z_{10}$,, Finite Fields Appl., 18 (2012), 563.  doi: 10.1016/j.ffa.2011.12.001.  Google Scholar

[12]

E. M. Rains, Shadow bounds for self-dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134.  doi: 10.1109/18.651000.  Google Scholar

[13]

N. J. A. Sloane, Is there a $(72; 36)$ $d = 16$ self-dual code?,, IEEE Trans. Inform. Theory, 2 (1973).   Google Scholar

show all references

References:
[1]

C. Aguilar Melchor and P. Gaborit, On the classification of extremal $[36,18,8]$ binary self-dual codes,, IEEE Trans. Inform. Theory, 54 (2008), 4743.  doi: 10.1109/TIT.2008.928976.  Google Scholar

[2]

E. F. Assmuss and H. F. Mattson, New $5$-designs,, J. Combin. Theory, 6 (1969), 122.  doi: 10.1016/S0021-9800(69)80115-8.  Google Scholar

[3]

M. Borello, The automorphism group of a self-dual $[72,36,16]$ binary code does not contain elements of order $6$,, IEEE Trans. Inform. Theory, 58 (2012), 7240.  doi: 10.1109/TIT.2012.2211095.  Google Scholar

[4]

W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language,, J. Symbol. Comput., 24 (1997), 235.  doi: 10.1006/jsco.1996.0125.  Google Scholar

[5]

S. Bouyuklieva, On the automorphisms of order $2$ with fixed points for the extremal self-dual codes of length $24m$,, Des. Codes Cryptogr., 25 (2002), 5.  doi: 10.1023/A:1012598832377.  Google Scholar

[6]

S. Bouyuklieva, On the automorphism group of a doubly even $(72,36,16)$ code,, IEEE Trans. Inform. Theory, 50 (2004), 544.  doi: 10.1109/TIT.2004.825252.  Google Scholar

[7]

L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over GF(4) of length up to 12,, J. Combin. Theory Ser. A, 112 (2006), 1351.  doi: 10.1016/j.jcta.2005.12.004.  Google Scholar

[8]

T. Feulner and G. Nebe, The automorphism group of an extremal $[72,36,16]$ code does not contain $Z_7$, $Z_3\times Z_3$, or $D_{10}$,, IEEE Trans. Inform. Theory, 58 (2012), 6916.  doi: 10.1109/TIT.2012.2208176.  Google Scholar

[9]

W. C. Huffman, Automorphisms of codes with application to extremal doubly even codes of length $48$,, IEEE Trans. Inform. Theory, IT-28 (1982), 511.  doi: 10.1109/TIT.1982.1056499.  Google Scholar

[10]

C. L. Mallows and N. J. A. Sloane, An upper bound for self-dual codes,, Inform. Control, 22 (1973), 188.  doi: 10.1016/S0019-9958(73)90273-8.  Google Scholar

[11]

G. Nebe, An extremal $[72,36,16]$ binary code has no automorphism group containing $Z_2\times Z_4$, $Q_8$, or $Z_{10}$,, Finite Fields Appl., 18 (2012), 563.  doi: 10.1016/j.ffa.2011.12.001.  Google Scholar

[12]

E. M. Rains, Shadow bounds for self-dual codes,, IEEE Trans. Inform. Theory, 44 (1998), 134.  doi: 10.1109/18.651000.  Google Scholar

[13]

N. J. A. Sloane, Is there a $(72; 36)$ $d = 16$ self-dual code?,, IEEE Trans. Inform. Theory, 2 (1973).   Google Scholar

[1]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (3)

[Back to Top]