February  2013, 7(1): 57-90. doi: 10.3934/amc.2013.7.57

Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order

1. 

Department of Mathematics and Statistics, Loyola University, Chicago, IL 60660, United States

Received  June 2012 Revised  August 2012 Published  January 2013

Additive codes over $\mathbb{F}_4$ are connected to binary quantum codes in [9]. As a natural generalization, nonbinary quantum codes in characteristic $p$ are connected to codes over $\mathbb{F}_{p^2}$ that are $\mathbb{F}_p$-linear in [30]. These codes that arise as connections with quantum codes are self-orthogonal under a particular inner product. We study a further generalization to codes termed $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. On these codes two different inner products are placed, one of which is the natural generalization of the inner products used in [9, 30]. We consider codes that are self-dual under one of these inner products and possess an automorphism of prime order. As an application of the theory developed, we classify some of these codes in the case $q=3$ and $t=2$.
Citation: W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57
References:
[1]

I. M. Araújo, et al., GAP reference manual,, The GAP Group, ().   Google Scholar

[2]

J. Bierbrauer, Cyclic additive and quantum stabilizer codes,, in, (2007), 276.   Google Scholar

[3]

J. Bierbrauer and Y. Edel, Quantum twisted codes,, J. Combin. Des., 8 (2000), 174.   Google Scholar

[4]

S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order 3 and quasi-symmetric 2-$(49,9,6)$ designs,, Des. Codes Crypt., 28 (2003), 163.  doi: 10.1023/A:1022588407585.  Google Scholar

[5]

S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal self-dual codes,, IEEE Trans. Inform. Theory, IT-56 (2010), 2091.   Google Scholar

[6]

S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual $[42,21,8]$ codes having an automorphism of order 3,, Finite Fields Appl., 13 (2007), 605.  doi: 10.1016/j.ffa.2006.01.001.  Google Scholar

[7]

S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual $[44,22,8]$ codes with an automorphism of order 3 or 7,, Int. J. Inform. Coding Theory, 2 (2011), 21.   Google Scholar

[8]

S. Buyuklieva and V. Yorgov, Singly-even self-dual codes of length 40,, Des. Codes Crypt., 9 (1996), 131.   Google Scholar

[9]

A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4),, IEEE Trans. Inform. Theory, IT-44 (1998), 1369.   Google Scholar

[10]

L. E. Danielsen, Graph-based classification of self-dual additive codes over finite fields,, Adv. Math. Commun., 3 (2009), 329.   Google Scholar

[11]

L. E. Danielsen, On the classification of Hermitian self-dual additive codes over GF(9),, IEEE Trans. Inform. Theory, IT-58 (2012), 5500.   Google Scholar

[12]

B. K. Dey and B. S. Rajan, $\mathbb F_q$-linear cyclic codes over $\mathbb F_{q^m}$: DFT approach,, Des. Codes Crypt., 34 (2005), 89.   Google Scholar

[13]

R. Dontcheva and M. Harada, Extremal doubly-even $[80,40,16]$ codes with an automorphism of order 19,, Finite Fields Appl., 9 (2003), 157.  doi: 10.1016/S1071-5797(02)00018-7.  Google Scholar

[14]

R. Dontcheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75.  doi: 10.1007/s00200-003-0126-4.  Google Scholar

[15]

W. C. Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48,, IEEE Trans. Inform. Theory, IT-28 (1982), 511.   Google Scholar

[16]

W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 I,, IEEE Trans. Inform. Theory, IT-36 (1990), 651.   Google Scholar

[17]

W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 II,, IEEE Trans. Inform. Theory, IT-37 (1991), 1206.   Google Scholar

[18]

W. C. Huffman, On extremal self-dual ternary codes of lengths 28 to 40,, IEEE Trans. Inform. Theory, IT-38 (1992), 1395.   Google Scholar

[19]

W. C. Huffman, Decompositions and extremal type II codes over $\mathbb Z_4$,, IEEE Trans. Inform. Theory, IT-44 (1998), 800.   Google Scholar

[20]

W. C. Huffman, Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order,, Adv. Math. Commun., 1 (2007), 357.   Google Scholar

[21]

W. C. Huffman, Additive cyclic codes over $\mathbb F_4$,, Adv. Math. Commun., 1 (2007), 429.   Google Scholar

[22]

W. C. Huffman, On the decomposition of self-dual codes over $\mathbb F_2 + u\mathbb F_2$ with an automorphism of odd prime order,, Finite Fields Appl., 13 (2007), 681.  doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[23]

W. C. Huffman, Additive cyclic codes over $\mathbb F_4$ of even length,, Adv. Math. Commun., 2 (2008), 309.   Google Scholar

[24]

W. C. Huffman, Cyclic $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes,, Int. J. Inform. Coding Theory, 1 (2010), 249.   Google Scholar

[25]

W. C. Huffman and V. D. Tonchev, The existence of extremal self-dual $[50,25,10]$ codes and quasi-symmetric 2-$(49,9,6)$ designs,, Des. Codes Crypt., 6 (1995), 97.  doi: 10.1007/BF01398008.  Google Scholar

[26]

W. C. Huffman and V. D. Tonchev, The $[52,26,10]$ binary self-dual codes with an automorphism of order 7,, Finite Fields Appl., 7 (2001), 341.  doi: 10.1006/ffta.2000.0295.  Google Scholar

[27]

V. I. Iorgov, Binary self-dual codes with automorphisms of odd order,, Problems Inform. Trans., 19 (1983), 260.   Google Scholar

[28]

V. I. Iorgov, Doubly even extremal codes of length 64,, Problems Inform. Trans., 22 (1986), 277.   Google Scholar

[29]

J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves,, Discrete Math., 308 (2008), 3115.   Google Scholar

[30]

E. M. Rains, Nonbinary quantum codes,, IEEE Trans. Inform. Theory, IT-45 (1999), 1827.   Google Scholar

[31]

R. P. Russeva, Self-dual $[24,12,8]$ quaternary codes with a nontrivial automorphism of order 3,, Finite Fields Appl., 8 (2002), 34.  doi: 10.1006/ffta.2001.0322.  Google Scholar

[32]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13,, IEEE Trans. Inform. Theory, IT-57 (2011), 7498.   Google Scholar

[33]

V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56,, IEEE Trans. Inform. Theory, IT-33 (1987), 77.   Google Scholar

[34]

V. Y. Yorgov, The extremal codes of length 42 with an automorphism of order 7,, Discrete Math., 190 (1998), 201.   Google Scholar

[35]

V. Y. Yorgov and N. Ziapov, Doubly even self-dual $[40,20,8]$ codes with automorphism of an odd order,, Problems Inform. Trans., 32 (1996), 253.   Google Scholar

show all references

References:
[1]

I. M. Araújo, et al., GAP reference manual,, The GAP Group, ().   Google Scholar

[2]

J. Bierbrauer, Cyclic additive and quantum stabilizer codes,, in, (2007), 276.   Google Scholar

[3]

J. Bierbrauer and Y. Edel, Quantum twisted codes,, J. Combin. Des., 8 (2000), 174.   Google Scholar

[4]

S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order 3 and quasi-symmetric 2-$(49,9,6)$ designs,, Des. Codes Crypt., 28 (2003), 163.  doi: 10.1023/A:1022588407585.  Google Scholar

[5]

S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal self-dual codes,, IEEE Trans. Inform. Theory, IT-56 (2010), 2091.   Google Scholar

[6]

S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual $[42,21,8]$ codes having an automorphism of order 3,, Finite Fields Appl., 13 (2007), 605.  doi: 10.1016/j.ffa.2006.01.001.  Google Scholar

[7]

S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual $[44,22,8]$ codes with an automorphism of order 3 or 7,, Int. J. Inform. Coding Theory, 2 (2011), 21.   Google Scholar

[8]

S. Buyuklieva and V. Yorgov, Singly-even self-dual codes of length 40,, Des. Codes Crypt., 9 (1996), 131.   Google Scholar

[9]

A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4),, IEEE Trans. Inform. Theory, IT-44 (1998), 1369.   Google Scholar

[10]

L. E. Danielsen, Graph-based classification of self-dual additive codes over finite fields,, Adv. Math. Commun., 3 (2009), 329.   Google Scholar

[11]

L. E. Danielsen, On the classification of Hermitian self-dual additive codes over GF(9),, IEEE Trans. Inform. Theory, IT-58 (2012), 5500.   Google Scholar

[12]

B. K. Dey and B. S. Rajan, $\mathbb F_q$-linear cyclic codes over $\mathbb F_{q^m}$: DFT approach,, Des. Codes Crypt., 34 (2005), 89.   Google Scholar

[13]

R. Dontcheva and M. Harada, Extremal doubly-even $[80,40,16]$ codes with an automorphism of order 19,, Finite Fields Appl., 9 (2003), 157.  doi: 10.1016/S1071-5797(02)00018-7.  Google Scholar

[14]

R. Dontcheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7,, Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75.  doi: 10.1007/s00200-003-0126-4.  Google Scholar

[15]

W. C. Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48,, IEEE Trans. Inform. Theory, IT-28 (1982), 511.   Google Scholar

[16]

W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 I,, IEEE Trans. Inform. Theory, IT-36 (1990), 651.   Google Scholar

[17]

W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 II,, IEEE Trans. Inform. Theory, IT-37 (1991), 1206.   Google Scholar

[18]

W. C. Huffman, On extremal self-dual ternary codes of lengths 28 to 40,, IEEE Trans. Inform. Theory, IT-38 (1992), 1395.   Google Scholar

[19]

W. C. Huffman, Decompositions and extremal type II codes over $\mathbb Z_4$,, IEEE Trans. Inform. Theory, IT-44 (1998), 800.   Google Scholar

[20]

W. C. Huffman, Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order,, Adv. Math. Commun., 1 (2007), 357.   Google Scholar

[21]

W. C. Huffman, Additive cyclic codes over $\mathbb F_4$,, Adv. Math. Commun., 1 (2007), 429.   Google Scholar

[22]

W. C. Huffman, On the decomposition of self-dual codes over $\mathbb F_2 + u\mathbb F_2$ with an automorphism of odd prime order,, Finite Fields Appl., 13 (2007), 681.  doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[23]

W. C. Huffman, Additive cyclic codes over $\mathbb F_4$ of even length,, Adv. Math. Commun., 2 (2008), 309.   Google Scholar

[24]

W. C. Huffman, Cyclic $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes,, Int. J. Inform. Coding Theory, 1 (2010), 249.   Google Scholar

[25]

W. C. Huffman and V. D. Tonchev, The existence of extremal self-dual $[50,25,10]$ codes and quasi-symmetric 2-$(49,9,6)$ designs,, Des. Codes Crypt., 6 (1995), 97.  doi: 10.1007/BF01398008.  Google Scholar

[26]

W. C. Huffman and V. D. Tonchev, The $[52,26,10]$ binary self-dual codes with an automorphism of order 7,, Finite Fields Appl., 7 (2001), 341.  doi: 10.1006/ffta.2000.0295.  Google Scholar

[27]

V. I. Iorgov, Binary self-dual codes with automorphisms of odd order,, Problems Inform. Trans., 19 (1983), 260.   Google Scholar

[28]

V. I. Iorgov, Doubly even extremal codes of length 64,, Problems Inform. Trans., 22 (1986), 277.   Google Scholar

[29]

J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves,, Discrete Math., 308 (2008), 3115.   Google Scholar

[30]

E. M. Rains, Nonbinary quantum codes,, IEEE Trans. Inform. Theory, IT-45 (1999), 1827.   Google Scholar

[31]

R. P. Russeva, Self-dual $[24,12,8]$ quaternary codes with a nontrivial automorphism of order 3,, Finite Fields Appl., 8 (2002), 34.  doi: 10.1006/ffta.2001.0322.  Google Scholar

[32]

N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13,, IEEE Trans. Inform. Theory, IT-57 (2011), 7498.   Google Scholar

[33]

V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56,, IEEE Trans. Inform. Theory, IT-33 (1987), 77.   Google Scholar

[34]

V. Y. Yorgov, The extremal codes of length 42 with an automorphism of order 7,, Discrete Math., 190 (1998), 201.   Google Scholar

[35]

V. Y. Yorgov and N. Ziapov, Doubly even self-dual $[40,20,8]$ codes with automorphism of an odd order,, Problems Inform. Trans., 32 (1996), 253.   Google Scholar

[1]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[2]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[5]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[6]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[7]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[8]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[9]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[10]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[11]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[12]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[13]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[14]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[15]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[16]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[17]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[18]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[19]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[20]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (160)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]