February  2013, 7(1): 57-90. doi: 10.3934/amc.2013.7.57

Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order

1. 

Department of Mathematics and Statistics, Loyola University, Chicago, IL 60660, United States

Received  June 2012 Revised  August 2012 Published  January 2013

Additive codes over $\mathbb{F}_4$ are connected to binary quantum codes in [9]. As a natural generalization, nonbinary quantum codes in characteristic $p$ are connected to codes over $\mathbb{F}_{p^2}$ that are $\mathbb{F}_p$-linear in [30]. These codes that arise as connections with quantum codes are self-orthogonal under a particular inner product. We study a further generalization to codes termed $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. On these codes two different inner products are placed, one of which is the natural generalization of the inner products used in [9, 30]. We consider codes that are self-dual under one of these inner products and possess an automorphism of prime order. As an application of the theory developed, we classify some of these codes in the case $q=3$ and $t=2$.
Citation: W. Cary Huffman. Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order. Advances in Mathematics of Communications, 2013, 7 (1) : 57-90. doi: 10.3934/amc.2013.7.57
References:
[1]

I. M. Araújo, et al., GAP reference manual,, The GAP Group, ().   Google Scholar

[2]

in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283.  Google Scholar

[3]

J. Combin. Des., 8 (2000), 174-188.  Google Scholar

[4]

Des. Codes Crypt., 28 (2003), 163-169. doi: 10.1023/A:1022588407585.  Google Scholar

[5]

IEEE Trans. Inform. Theory, IT-56 (2010), 2091-2096.  Google Scholar

[6]

Finite Fields Appl., 13 (2007), 605-615. doi: 10.1016/j.ffa.2006.01.001.  Google Scholar

[7]

Int. J. Inform. Coding Theory, 2 (2011), 21-37.  Google Scholar

[8]

Des. Codes Crypt., 9 (1996), 131-141.  Google Scholar

[9]

IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387.  Google Scholar

[10]

Adv. Math. Commun., 3 (2009), 329-348.  Google Scholar

[11]

IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511.  Google Scholar

[12]

Des. Codes Crypt., 34 (2005), 89-116.  Google Scholar

[13]

Finite Fields Appl., 9 (2003), 157-167. doi: 10.1016/S1071-5797(02)00018-7.  Google Scholar

[14]

Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75-79. doi: 10.1007/s00200-003-0126-4.  Google Scholar

[15]

IEEE Trans. Inform. Theory, IT-28 (1982), 511-521.  Google Scholar

[16]

IEEE Trans. Inform. Theory, IT-36 (1990), 651-660.  Google Scholar

[17]

IEEE Trans. Inform. Theory, IT-37 (1991), 1206-1216.  Google Scholar

[18]

IEEE Trans. Inform. Theory, IT-38 (1992), 1395-1400.  Google Scholar

[19]

IEEE Trans. Inform. Theory, IT-44 (1998), 800-809.  Google Scholar

[20]

Adv. Math. Commun., 1 (2007), 357-398.  Google Scholar

[21]

Adv. Math. Commun., 1 (2007), 429-461.  Google Scholar

[22]

Finite Fields Appl., 13 (2007), 681-712. doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[23]

Adv. Math. Commun., 2 (2008), 309-343.  Google Scholar

[24]

Int. J. Inform. Coding Theory, 1 (2010), 249-284.  Google Scholar

[25]

Des. Codes Crypt., 6 (1995), 97-106. doi: 10.1007/BF01398008.  Google Scholar

[26]

Finite Fields Appl., 7 (2001), 341-349. doi: 10.1006/ffta.2000.0295.  Google Scholar

[27]

Problems Inform. Trans., 19 (1983), 260-270.  Google Scholar

[28]

Problems Inform. Trans., 22 (1986), 277-284.  Google Scholar

[29]

Discrete Math., 308 (2008), 3115-3124.  Google Scholar

[30]

IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832.  Google Scholar

[31]

Finite Fields Appl., 8 (2002), 34-51. doi: 10.1006/ffta.2001.0322.  Google Scholar

[32]

IEEE Trans. Inform. Theory, IT-57 (2011), 7498-7506.  Google Scholar

[33]

IEEE Trans. Inform. Theory, IT-33 (1987), 77-82.  Google Scholar

[34]

Discrete Math., 190 (1998), 201-213.  Google Scholar

[35]

Problems Inform. Trans., 32 (1996), 253-257.  Google Scholar

show all references

References:
[1]

I. M. Araújo, et al., GAP reference manual,, The GAP Group, ().   Google Scholar

[2]

in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283.  Google Scholar

[3]

J. Combin. Des., 8 (2000), 174-188.  Google Scholar

[4]

Des. Codes Crypt., 28 (2003), 163-169. doi: 10.1023/A:1022588407585.  Google Scholar

[5]

IEEE Trans. Inform. Theory, IT-56 (2010), 2091-2096.  Google Scholar

[6]

Finite Fields Appl., 13 (2007), 605-615. doi: 10.1016/j.ffa.2006.01.001.  Google Scholar

[7]

Int. J. Inform. Coding Theory, 2 (2011), 21-37.  Google Scholar

[8]

Des. Codes Crypt., 9 (1996), 131-141.  Google Scholar

[9]

IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387.  Google Scholar

[10]

Adv. Math. Commun., 3 (2009), 329-348.  Google Scholar

[11]

IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511.  Google Scholar

[12]

Des. Codes Crypt., 34 (2005), 89-116.  Google Scholar

[13]

Finite Fields Appl., 9 (2003), 157-167. doi: 10.1016/S1071-5797(02)00018-7.  Google Scholar

[14]

Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75-79. doi: 10.1007/s00200-003-0126-4.  Google Scholar

[15]

IEEE Trans. Inform. Theory, IT-28 (1982), 511-521.  Google Scholar

[16]

IEEE Trans. Inform. Theory, IT-36 (1990), 651-660.  Google Scholar

[17]

IEEE Trans. Inform. Theory, IT-37 (1991), 1206-1216.  Google Scholar

[18]

IEEE Trans. Inform. Theory, IT-38 (1992), 1395-1400.  Google Scholar

[19]

IEEE Trans. Inform. Theory, IT-44 (1998), 800-809.  Google Scholar

[20]

Adv. Math. Commun., 1 (2007), 357-398.  Google Scholar

[21]

Adv. Math. Commun., 1 (2007), 429-461.  Google Scholar

[22]

Finite Fields Appl., 13 (2007), 681-712. doi: 10.1016/j.ffa.2006.02.003.  Google Scholar

[23]

Adv. Math. Commun., 2 (2008), 309-343.  Google Scholar

[24]

Int. J. Inform. Coding Theory, 1 (2010), 249-284.  Google Scholar

[25]

Des. Codes Crypt., 6 (1995), 97-106. doi: 10.1007/BF01398008.  Google Scholar

[26]

Finite Fields Appl., 7 (2001), 341-349. doi: 10.1006/ffta.2000.0295.  Google Scholar

[27]

Problems Inform. Trans., 19 (1983), 260-270.  Google Scholar

[28]

Problems Inform. Trans., 22 (1986), 277-284.  Google Scholar

[29]

Discrete Math., 308 (2008), 3115-3124.  Google Scholar

[30]

IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832.  Google Scholar

[31]

Finite Fields Appl., 8 (2002), 34-51. doi: 10.1006/ffta.2001.0322.  Google Scholar

[32]

IEEE Trans. Inform. Theory, IT-57 (2011), 7498-7506.  Google Scholar

[33]

IEEE Trans. Inform. Theory, IT-33 (1987), 77-82.  Google Scholar

[34]

Discrete Math., 190 (1998), 201-213.  Google Scholar

[35]

Problems Inform. Trans., 32 (1996), 253-257.  Google Scholar

[1]

Gabriele Nebe, Wolfgang Willems. On self-dual MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 633-642. doi: 10.3934/amc.2016031

[2]

Lars Eirik Danielsen. Graph-based classification of self-dual additive codes over finite fields. Advances in Mathematics of Communications, 2009, 3 (4) : 329-348. doi: 10.3934/amc.2009.3.329

[3]

Ken Saito. Self-dual additive $ \mathbb{F}_4 $-codes of lengths up to 40 represented by circulant graphs. Advances in Mathematics of Communications, 2019, 13 (2) : 213-220. doi: 10.3934/amc.2019014

[4]

W. Cary Huffman. Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order. Advances in Mathematics of Communications, 2007, 1 (3) : 357-398. doi: 10.3934/amc.2007.1.357

[5]

Masaaki Harada, Akihiro Munemasa. Classification of self-dual codes of length 36. Advances in Mathematics of Communications, 2012, 6 (2) : 229-235. doi: 10.3934/amc.2012.6.229

[6]

Stefka Bouyuklieva, Anton Malevich, Wolfgang Willems. On the performance of binary extremal self-dual codes. Advances in Mathematics of Communications, 2011, 5 (2) : 267-274. doi: 10.3934/amc.2011.5.267

[7]

Nikolay Yankov, Damyan Anev, Müberra Gürel. Self-dual codes with an automorphism of order 13. Advances in Mathematics of Communications, 2017, 11 (3) : 635-645. doi: 10.3934/amc.2017047

[8]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2020, 14 (2) : 319-332. doi: 10.3934/amc.2020023

[9]

Steven T. Dougherty, Joe Gildea, Abidin Kaya, Bahattin Yildiz. New self-dual and formally self-dual codes from group ring constructions. Advances in Mathematics of Communications, 2020, 14 (1) : 11-22. doi: 10.3934/amc.2020002

[10]

Masaaki Harada, Akihiro Munemasa. On the covering radii of extremal doubly even self-dual codes. Advances in Mathematics of Communications, 2007, 1 (2) : 251-256. doi: 10.3934/amc.2007.1.251

[11]

Stefka Bouyuklieva, Iliya Bouyukliev. Classification of the extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2010, 4 (3) : 433-439. doi: 10.3934/amc.2010.4.433

[12]

Hyun Jin Kim, Heisook Lee, June Bok Lee, Yoonjin Lee. Construction of self-dual codes with an automorphism of order $p$. Advances in Mathematics of Communications, 2011, 5 (1) : 23-36. doi: 10.3934/amc.2011.5.23

[13]

Minjia Shi, Daitao Huang, Lin Sok, Patrick Solé. Double circulant self-dual and LCD codes over Galois rings. Advances in Mathematics of Communications, 2019, 13 (1) : 171-183. doi: 10.3934/amc.2019011

[14]

Bram van Asch, Frans Martens. Lee weight enumerators of self-dual codes and theta functions. Advances in Mathematics of Communications, 2008, 2 (4) : 393-402. doi: 10.3934/amc.2008.2.393

[15]

Bram van Asch, Frans Martens. A note on the minimum Lee distance of certain self-dual modular codes. Advances in Mathematics of Communications, 2012, 6 (1) : 65-68. doi: 10.3934/amc.2012.6.65

[16]

Masaaki Harada, Katsushi Waki. New extremal formally self-dual even codes of length 30. Advances in Mathematics of Communications, 2009, 3 (4) : 311-316. doi: 10.3934/amc.2009.3.311

[17]

Katherine Morrison. An enumeration of the equivalence classes of self-dual matrix codes. Advances in Mathematics of Communications, 2015, 9 (4) : 415-436. doi: 10.3934/amc.2015.9.415

[18]

Steven T. Dougherty, Joe Gildea, Adrian Korban, Abidin Kaya. Composite constructions of self-dual codes from group rings and new extremal self-dual binary codes of length 68. Advances in Mathematics of Communications, 2020, 14 (4) : 677-702. doi: 10.3934/amc.2020037

[19]

Suat Karadeniz, Bahattin Yildiz. New extremal binary self-dual codes of length $68$ from $R_2$-lifts of binary self-dual codes. Advances in Mathematics of Communications, 2013, 7 (2) : 219-229. doi: 10.3934/amc.2013.7.219

[20]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]