\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Self-dual $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes with an automorphism of prime order

Abstract Related Papers Cited by
  • Additive codes over $\mathbb{F}_4$ are connected to binary quantum codes in [9]. As a natural generalization, nonbinary quantum codes in characteristic $p$ are connected to codes over $\mathbb{F}_{p^2}$ that are $\mathbb{F}_p$-linear in [30]. These codes that arise as connections with quantum codes are self-orthogonal under a particular inner product. We study a further generalization to codes termed $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. On these codes two different inner products are placed, one of which is the natural generalization of the inner products used in [9, 30]. We consider codes that are self-dual under one of these inner products and possess an automorphism of prime order. As an application of the theory developed, we classify some of these codes in the case $q=3$ and $t=2$.
    Mathematics Subject Classification: 94B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. M. Araújo, et al.GAP reference manual, The GAP Group, http://www.gap-system.org

    [2]

    J. Bierbrauer, Cyclic additive and quantum stabilizer codes, in "Arithmetic of Finite Fields: First International Workshop'' (eds. C. Carlet and B. Sunar), Madrid, (2007), 276-283.

    [3]

    J. Bierbrauer and Y. Edel, Quantum twisted codes, J. Combin. Des., 8 (2000), 174-188.

    [4]

    S. Bouyuklieva and M. Harada, Extremal self-dual $[50,25,10]$ codes with automorphisms of order 3 and quasi-symmetric 2-$(49,9,6)$ designs, Des. Codes Crypt., 28 (2003), 163-169.doi: 10.1023/A:1022588407585.

    [5]

    S. Bouyuklieva, A. Malevich and W. Willems, Automorphisms of extremal self-dual codes, IEEE Trans. Inform. Theory, IT-56 (2010), 2091-2096.

    [6]

    S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual $[42,21,8]$ codes having an automorphism of order 3, Finite Fields Appl., 13 (2007), 605-615.doi: 10.1016/j.ffa.2006.01.001.

    [7]

    S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual $[44,22,8]$ codes with an automorphism of order 3 or 7, Int. J. Inform. Coding Theory, 2 (2011), 21-37.

    [8]

    S. Buyuklieva and V. Yorgov, Singly-even self-dual codes of length 40, Des. Codes Crypt., 9 (1996), 131-141.

    [9]

    A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over GF(4), IEEE Trans. Inform. Theory, IT-44 (1998), 1369-1387.

    [10]

    L. E. Danielsen, Graph-based classification of self-dual additive codes over finite fields, Adv. Math. Commun., 3 (2009), 329-348.

    [11]

    L. E. Danielsen, On the classification of Hermitian self-dual additive codes over GF(9), IEEE Trans. Inform. Theory, IT-58 (2012), 5500-5511.

    [12]

    B. K. Dey and B. S. Rajan, $\mathbb F_q$-linear cyclic codes over $\mathbb F_{q^m}$: DFT approach, Des. Codes Crypt., 34 (2005), 89-116.

    [13]

    R. Dontcheva and M. Harada, Extremal doubly-even $[80,40,16]$ codes with an automorphism of order 19, Finite Fields Appl., 9 (2003), 157-167.doi: 10.1016/S1071-5797(02)00018-7.

    [14]

    R. Dontcheva and M. Harada, Some extremal self-dual codes with an automorphism of order 7, Appl. Algebra Engrg. Comm. Comput., 14 (2003), 75-79.doi: 10.1007/s00200-003-0126-4.

    [15]

    W. C. Huffman, Automorphisms of codes with applications to extremal doubly even codes of length 48, IEEE Trans. Inform. Theory, IT-28 (1982), 511-521.

    [16]

    W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 I, IEEE Trans. Inform. Theory, IT-36 (1990), 651-660.

    [17]

    W. C. Huffman, On extremal self-dual quaternary codes of lengths 18 to 28 II, IEEE Trans. Inform. Theory, IT-37 (1991), 1206-1216.

    [18]

    W. C. Huffman, On extremal self-dual ternary codes of lengths 28 to 40, IEEE Trans. Inform. Theory, IT-38 (1992), 1395-1400.

    [19]

    W. C. Huffman, Decompositions and extremal type II codes over $\mathbb Z_4$, IEEE Trans. Inform. Theory, IT-44 (1998), 800-809.

    [20]

    W. C. Huffman, Additive self-dual codes over $\mathbb F_4$ with an automorphism of odd prime order, Adv. Math. Commun., 1 (2007), 357-398.

    [21]

    W. C. Huffman, Additive cyclic codes over $\mathbb F_4$, Adv. Math. Commun., 1 (2007), 429-461.

    [22]

    W. C. Huffman, On the decomposition of self-dual codes over $\mathbb F_2 + u\mathbb F_2$ with an automorphism of odd prime order, Finite Fields Appl., 13 (2007), 681-712.doi: 10.1016/j.ffa.2006.02.003.

    [23]

    W. C. Huffman, Additive cyclic codes over $\mathbb F_4$ of even length, Adv. Math. Commun., 2 (2008), 309-343.

    [24]

    W. C. Huffman, Cyclic $\mathbb F_q$-linear $\mathbb F_{q^t}$-codes, Int. J. Inform. Coding Theory, 1 (2010), 249-284.

    [25]

    W. C. Huffman and V. D. Tonchev, The existence of extremal self-dual $[50,25,10]$ codes and quasi-symmetric 2-$(49,9,6)$ designs, Des. Codes Crypt., 6 (1995), 97-106.doi: 10.1007/BF01398008.

    [26]

    W. C. Huffman and V. D. Tonchev, The $[52,26,10]$ binary self-dual codes with an automorphism of order 7, Finite Fields Appl., 7 (2001), 341-349.doi: 10.1006/ffta.2000.0295.

    [27]

    V. I. Iorgov, Binary self-dual codes with automorphisms of odd order, Problems Inform. Trans., 19 (1983), 260-270.

    [28]

    V. I. Iorgov, Doubly even extremal codes of length 64, Problems Inform. Trans., 22 (1986), 277-284.

    [29]

    J.-L. Kim and J. Walker, Nonbinary quantum error-correcting codes from algebraic curves, Discrete Math., 308 (2008), 3115-3124.

    [30]

    E. M. Rains, Nonbinary quantum codes, IEEE Trans. Inform. Theory, IT-45 (1999), 1827-1832.

    [31]

    R. P. Russeva, Self-dual $[24,12,8]$ quaternary codes with a nontrivial automorphism of order 3, Finite Fields Appl., 8 (2002), 34-51.doi: 10.1006/ffta.2001.0322.

    [32]

    N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, IT-57 (2011), 7498-7506.

    [33]

    V. Y. Yorgov, A method for constructing inequivalent self-dual codes with applications to length 56, IEEE Trans. Inform. Theory, IT-33 (1987), 77-82.

    [34]

    V. Y. Yorgov, The extremal codes of length 42 with an automorphism of order 7, Discrete Math., 190 (1998), 201-213.

    [35]

    V. Y. Yorgov and N. Ziapov, Doubly even self-dual $[40,20,8]$ codes with automorphism of an odd order, Problems Inform. Trans., 32 (1996), 253-257.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(220) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return