-
Previous Article
An improved lower bound for $(1,\leq 2)$-identifying codes in the king grid
- AMC Home
- This Issue
-
Next Article
On multi-trial Forney-Kovalev decoding of concatenated codes
Special bent and near-bent functions
1. | IMATH(IAA), Université du Sud Toulon-Var, 83957 La Garde Cedex, France |
References:
[1] |
A. Canteault, C. Carlet, P. Charpin and C. Fontaine, On cryptographic properties of the cosets of R(1,m), IEEE Trans. Inform. Theory, 47 (2001), 1494-1513.
doi: 10.1109/18.923730. |
[2] |
A. Canteault and P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory, 49 (2003), 2004-2019.
doi: 10.1109/TIT.2003.814476. |
[3] |
J. F. Dillon, Elementary Hadamard Difference Sets, Ph.D thesis, University of Maryland, 1974. |
[4] |
J. F. Dillon, Multiplicative difference sets via additive characters, Des. Codes Cryptogr., 17 (1999), 225-235.
doi: 10.1023/A:1026435428030. |
[5] |
R. Gold, Maximal recursive squences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory, 14 (1968), 154-156.
doi: 10.1109/TIT.1968.1054106. |
[6] |
X. D. Hou, Cubic bent functions, Discrete Math., 189 (1998), 149-161.
doi: 10.1016/S0012-365X(98)00008-9. |
[7] |
G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.
doi: 10.1016/j.jcta.2008.12.004. |
[8] |
O. S. Rothaus, On bent functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[9] |
J. Wolfmann, Bent functions and coding theory, in Difference Sets, Sequences and their Correlation Properties (eds. A. Pott, P. V. Kumar, T. Helleseth and D. Jungnickel), Kluwer Academic Publishers, 1999, 393-418. |
[10] |
J. Wolfmann, Cyclic code aspects of bent functions, in Finite Fields Theory and Applications, Amer. Math. Soc., 2010, 363-384.
doi: 10.1090/conm/518/10218. |
show all references
References:
[1] |
A. Canteault, C. Carlet, P. Charpin and C. Fontaine, On cryptographic properties of the cosets of R(1,m), IEEE Trans. Inform. Theory, 47 (2001), 1494-1513.
doi: 10.1109/18.923730. |
[2] |
A. Canteault and P. Charpin, Decomposing bent functions, IEEE Trans. Inform. Theory, 49 (2003), 2004-2019.
doi: 10.1109/TIT.2003.814476. |
[3] |
J. F. Dillon, Elementary Hadamard Difference Sets, Ph.D thesis, University of Maryland, 1974. |
[4] |
J. F. Dillon, Multiplicative difference sets via additive characters, Des. Codes Cryptogr., 17 (1999), 225-235.
doi: 10.1023/A:1026435428030. |
[5] |
R. Gold, Maximal recursive squences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory, 14 (1968), 154-156.
doi: 10.1109/TIT.1968.1054106. |
[6] |
X. D. Hou, Cubic bent functions, Discrete Math., 189 (1998), 149-161.
doi: 10.1016/S0012-365X(98)00008-9. |
[7] |
G. Leander and G. McGuire, Construction of bent functions from near-bent functions, J. Combin. Theory Ser. A, 116 (2009), 960-970.
doi: 10.1016/j.jcta.2008.12.004. |
[8] |
O. S. Rothaus, On bent functions, J. Combin. Theory Ser. A, 20 (1976), 300-305.
doi: 10.1016/0097-3165(76)90024-8. |
[9] |
J. Wolfmann, Bent functions and coding theory, in Difference Sets, Sequences and their Correlation Properties (eds. A. Pott, P. V. Kumar, T. Helleseth and D. Jungnickel), Kluwer Academic Publishers, 1999, 393-418. |
[10] |
J. Wolfmann, Cyclic code aspects of bent functions, in Finite Fields Theory and Applications, Amer. Math. Soc., 2010, 363-384.
doi: 10.1090/conm/518/10218. |
[1] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[2] |
Claude Carlet, Fengrong Zhang, Yupu Hu. Secondary constructions of bent functions and their enforcement. Advances in Mathematics of Communications, 2012, 6 (3) : 305-314. doi: 10.3934/amc.2012.6.305 |
[3] |
Sihem Mesnager, Fengrong Zhang, Yong Zhou. On construction of bent functions involving symmetric functions and their duals. Advances in Mathematics of Communications, 2017, 11 (2) : 347-352. doi: 10.3934/amc.2017027 |
[4] |
Sihem Mesnager, Fengrong Zhang. On constructions of bent, semi-bent and five valued spectrum functions from old bent functions. Advances in Mathematics of Communications, 2017, 11 (2) : 339-345. doi: 10.3934/amc.2017026 |
[5] |
Ayça Çeşmelioğlu, Wilfried Meidl. Bent and vectorial bent functions, partial difference sets, and strongly regular graphs. Advances in Mathematics of Communications, 2018, 12 (4) : 691-705. doi: 10.3934/amc.2018041 |
[6] |
Samir Hodžić, Enes Pasalic. Generalized bent functions -sufficient conditions and related constructions. Advances in Mathematics of Communications, 2017, 11 (3) : 549-566. doi: 10.3934/amc.2017043 |
[7] |
Claude Carlet, Juan Carlos Ku-Cauich, Horacio Tapia-Recillas. Bent functions on a Galois ring and systematic authentication codes. Advances in Mathematics of Communications, 2012, 6 (2) : 249-258. doi: 10.3934/amc.2012.6.249 |
[8] |
Junchao Zhou, Nian Li, Xiangyong Zeng, Yunge Xu. A generic construction of rotation symmetric bent functions. Advances in Mathematics of Communications, 2021, 15 (4) : 721-736. doi: 10.3934/amc.2020092 |
[9] |
Kanat Abdukhalikov, Duy Ho. Vandermonde sets, hyperovals and Niho bent functions. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021048 |
[10] |
Joan-Josep Climent, Francisco J. García, Verónica Requena. On the construction of bent functions of $n+2$ variables from bent functions of $n$ variables. Advances in Mathematics of Communications, 2008, 2 (4) : 421-431. doi: 10.3934/amc.2008.2.421 |
[11] |
Ayça Çeşmelioǧlu, Wilfried Meidl, Alexander Pott. On the dual of (non)-weakly regular bent functions and self-dual bent functions. Advances in Mathematics of Communications, 2013, 7 (4) : 425-440. doi: 10.3934/amc.2013.7.425 |
[12] |
Jyrki Lahtonen, Gary McGuire, Harold N. Ward. Gold and Kasami-Welch functions, quadratic forms, and bent functions. Advances in Mathematics of Communications, 2007, 1 (2) : 243-250. doi: 10.3934/amc.2007.1.243 |
[13] |
Kanat Abdukhalikov, Sihem Mesnager. Explicit constructions of bent functions from pseudo-planar functions. Advances in Mathematics of Communications, 2017, 11 (2) : 293-299. doi: 10.3934/amc.2017021 |
[14] |
Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037 |
[15] |
Sihong Su. A new construction of rotation symmetric bent functions with maximal algebraic degree. Advances in Mathematics of Communications, 2019, 13 (2) : 253-265. doi: 10.3934/amc.2019017 |
[16] |
Wenying Zhang, Zhaohui Xing, Keqin Feng. A construction of bent functions with optimal algebraic degree and large symmetric group. Advances in Mathematics of Communications, 2020, 14 (1) : 23-33. doi: 10.3934/amc.2020003 |
[17] |
Natalia Tokareva. On the number of bent functions from iterative constructions: lower bounds and hypotheses. Advances in Mathematics of Communications, 2011, 5 (4) : 609-621. doi: 10.3934/amc.2011.5.609 |
[18] |
Yanfeng Qi, Chunming Tang, Zhengchun Zhou, Cuiling Fan. Several infinite families of p-ary weakly regular bent functions. Advances in Mathematics of Communications, 2018, 12 (2) : 303-315. doi: 10.3934/amc.2018019 |
[19] |
Chunming Tang, Maozhi Xu, Yanfeng Qi, Mingshuo Zhou. A new class of $ p $-ary regular bent functions. Advances in Mathematics of Communications, 2021, 15 (1) : 55-64. doi: 10.3934/amc.2020042 |
[20] |
Rumi Melih Pelen. Three weight ternary linear codes from non-weakly regular bent functions. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022020 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]