- Previous Article
- AMC Home
- This Issue
-
Next Article
A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences
A reduction point algorithm for cocompact Fuchsian groups and applications
1. | Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, 08007 Barcelona, Spain, Spain |
References:
[1] |
M. Alsina and P. Bayer, Quaternion Orders, Quadratic Forms and Shimura Curves, Amer. Math. Soc., Providence, 2004. |
[2] |
P. Bayer, Contributions to Shimura curves, in Win-Women in Numbers: Research Directions in Number Theory, 2011, 15-33. |
[3] |
I. Blanco-Chacón, C. Hollanti and D. Remón, Fuchsian codes for AWGN channels, in International Workshop on Coding and Cryptography 2013, Bergen, 496-507. |
[4] |
E. Brandani da Silva, M. Firer, S. Costa and R. Palazzo, Signal constellations in the hyperbolic plane: a proposal for new communication systems, J. Franklin Institute, 343 (2006), 69-82.
doi: 10.1016/j.jfranklin.2005.09.001. |
[5] |
E. D. Carvalho, A. A. Andrade, R. Palazzo and J. Vieira, Arithmetic Fuchsian groups and space time codes, Comput. Appl. Math., 30 (2011), 485-498.
doi: 10.1590/S1807-03022011000300001. |
[6] |
D. Hejhal and B. Rackner, On the topography of Maass waveforms for PSL(2,Z), Exp. Math., 1 (1992), 275-305. |
[7] | |
[8] |
A. Lascurain, Some presentations for $\overline{\Gamma}_0(N)$, Conform. Geom. Dyn., 6 (2002), 33-60.
doi: 10.1090/S1088-4173-02-00073-5. |
[9] | |
[10] |
F. Strömberg, Maass waveforms on $(\Gamma_0(N), \chi)$ (computational aspects), in Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology (eds. J. Bolt and F. Steiner), Cambridge Univ. Press, 2012, 187-228. |
[11] |
J. Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux, 21 (2009), 467-489. |
show all references
References:
[1] |
M. Alsina and P. Bayer, Quaternion Orders, Quadratic Forms and Shimura Curves, Amer. Math. Soc., Providence, 2004. |
[2] |
P. Bayer, Contributions to Shimura curves, in Win-Women in Numbers: Research Directions in Number Theory, 2011, 15-33. |
[3] |
I. Blanco-Chacón, C. Hollanti and D. Remón, Fuchsian codes for AWGN channels, in International Workshop on Coding and Cryptography 2013, Bergen, 496-507. |
[4] |
E. Brandani da Silva, M. Firer, S. Costa and R. Palazzo, Signal constellations in the hyperbolic plane: a proposal for new communication systems, J. Franklin Institute, 343 (2006), 69-82.
doi: 10.1016/j.jfranklin.2005.09.001. |
[5] |
E. D. Carvalho, A. A. Andrade, R. Palazzo and J. Vieira, Arithmetic Fuchsian groups and space time codes, Comput. Appl. Math., 30 (2011), 485-498.
doi: 10.1590/S1807-03022011000300001. |
[6] |
D. Hejhal and B. Rackner, On the topography of Maass waveforms for PSL(2,Z), Exp. Math., 1 (1992), 275-305. |
[7] | |
[8] |
A. Lascurain, Some presentations for $\overline{\Gamma}_0(N)$, Conform. Geom. Dyn., 6 (2002), 33-60.
doi: 10.1090/S1088-4173-02-00073-5. |
[9] | |
[10] |
F. Strömberg, Maass waveforms on $(\Gamma_0(N), \chi)$ (computational aspects), in Hyperbolic Geometry and Applications in Quantum Chaos and Cosmology (eds. J. Bolt and F. Steiner), Cambridge Univ. Press, 2012, 187-228. |
[11] |
J. Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux, 21 (2009), 467-489. |
[1] |
Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete and Continuous Dynamical Systems, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503 |
[2] |
Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637 |
[3] |
Rodolfo Gutiérrez-Romo. A family of quaternionic monodromy groups of the Kontsevich–Zorich cocycle. Journal of Modern Dynamics, 2019, 14: 227-242. doi: 10.3934/jmd.2019008 |
[4] |
Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541 |
[5] |
Carolyn Mayer, Kathryn Haymaker, Christine A. Kelley. Channel decomposition for multilevel codes over multilevel and partial erasure channels. Advances in Mathematics of Communications, 2018, 12 (1) : 151-168. doi: 10.3934/amc.2018010 |
[6] |
A.V. Borisov, A.A. Kilin, I.S. Mamaev. Reduction and chaotic behavior of point vortices on a plane and a sphere. Conference Publications, 2005, 2005 (Special) : 100-109. doi: 10.3934/proc.2005.2005.100 |
[7] |
Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027 |
[8] |
Kanat Abdukhalikov. On codes over rings invariant under affine groups. Advances in Mathematics of Communications, 2013, 7 (3) : 253-265. doi: 10.3934/amc.2013.7.253 |
[9] |
Heide Gluesing-Luerssen, Hunter Lehmann. Automorphism groups and isometries for cyclic orbit codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021040 |
[10] |
Yuly Shipilevsky. Complex and quaternionic optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 249-255. doi: 10.3934/naco.2019051 |
[11] |
Ram U. Verma. On the generalized proximal point algorithm with applications to inclusion problems. Journal of Industrial and Management Optimization, 2009, 5 (2) : 381-390. doi: 10.3934/jimo.2009.5.381 |
[12] |
Chuangqiang Hu, Shudi Yang. Multi-point codes from the GGS curves. Advances in Mathematics of Communications, 2020, 14 (2) : 279-299. doi: 10.3934/amc.2020020 |
[13] |
Olav Geil, Carlos Munuera, Diego Ruano, Fernando Torres. On the order bounds for one-point AG codes. Advances in Mathematics of Communications, 2011, 5 (3) : 489-504. doi: 10.3934/amc.2011.5.489 |
[14] |
John B. Little. The ubiquity of order domains for the construction of error control codes. Advances in Mathematics of Communications, 2007, 1 (1) : 151-171. doi: 10.3934/amc.2007.1.151 |
[15] |
Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129 |
[16] |
Thomas Feulner. The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Advances in Mathematics of Communications, 2009, 3 (4) : 363-383. doi: 10.3934/amc.2009.3.363 |
[17] |
Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065 |
[18] |
Zheng-Hai Huang, Shang-Wen Xu. Convergence properties of a non-interior-point smoothing algorithm for the P*NCP. Journal of Industrial and Management Optimization, 2007, 3 (3) : 569-584. doi: 10.3934/jimo.2007.3.569 |
[19] |
Behrouz Kheirfam, Morteza Moslemi. On the extension of an arc-search interior-point algorithm for semidefinite optimization. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 261-275. doi: 10.3934/naco.2018015 |
[20] |
Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]