August  2014, 8(3): 241-256. doi: 10.3934/amc.2014.8.241

Structural properties of Costas arrays

1. 

Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6

2. 

Department of Mathematics and Statistics, University of Victoria, 3800 Finnerty Road, Victoria BC V8P 5C2, Canada

Received  August 2012 Revised  March 2014 Published  August 2014

We apply combinatorial arguments to establish structural constraints on Costas arrays. We prove restrictions on when a Costas array can contain a large corner region whose entries are all 0. In particular, we prove a 2010 conjecture due to Russo, Erickson and Beard. We then constrain the vectors joining pairs of 1s in a Costas array by establishing a series of results on its number of "mirror pairs," namely pairs of these vectors having the same length but opposite slopes.
Citation: Jonathan Jedwab, Jane Wodlinger. Structural properties of Costas arrays. Advances in Mathematics of Communications, 2014, 8 (3) : 241-256. doi: 10.3934/amc.2014.8.241
References:
[1]

J. K. Beard, Orders three through 100,, Database of Costas arrays, (). Google Scholar

[2]

S. R. Blackburn, T. Etzion, K. M. Martin and M. B. Paterson, Two-dimensional patterns with distinct differences - constructions, bounds, and maximal anticodes,, IEEE Trans. Inform. Theory, 56 (2010), 1216. doi: 10.1109/TIT.2009.2039046. Google Scholar

[3]

C. P. Brown, M. Cenkl, R. A. Games, J. Rushanan, O. Moreno and P. Pei, New enumeration results for Costas arrays,, in Proc. IEEE Int. Symp. Inform. Theory, (1993). doi: 10.1109/ISIT.1993.748721. Google Scholar

[4]

J. P. Costas, A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996. Google Scholar

[5]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., (2006). doi: 10.1155/JAM/2006/26385. Google Scholar

[6]

K. Drakakis, Open problems in Costas arrays,, preprint, (). Google Scholar

[7]

K. Drakakis, R. Gow, J. Healy and S. Rickard, Cross-correlation properties of Costas arrays and their images under horizontal and vertical flips,, Math. Problems Engin., (2008). doi: 10.1155/2008/369321. Google Scholar

[8]

K. Drakakis, R. Gow and S. Rickard, Interlaced Costas arrays do not exist,, Math. Problems Engin., (2008). doi: 10.1155/2008/456034. Google Scholar

[9]

K. Drakakis, R. Gow and S. Rickard, Common distance vectors between Costas arrays,, Adv. Math. Commun., 3 (2009), 35. doi: 10.3934/amc.2009.3.35. Google Scholar

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences,, Adv. Math. Commun., 5 (2011), 69. doi: 10.3934/amc.2011.5.69. Google Scholar

[11]

P. Erdős, R. Graham, I. Z. Ruzsa and H. Taylor, Bounds for arrays of dots with distinct slopes or lengths,, Combinatorica, 12 (1992), 39. doi: 10.1007/BF01191203. Google Scholar

[12]

P. Erdős and P. Turán, On a problem of Sidon in additive number theory and on some related problems,, J. London Math. Soc., 16 (1941), 212. Google Scholar

[13]

T. Etzion, Combinatorial designs derived from Costas arrays,, in Sequences: Combinatorics, (1990), 208. Google Scholar

[14]

T. Etzion, Sequence folding, lattice tiling, and multidimensional coding,, IEEE Trans. Inform. Theory, 57 (2011), 4383. doi: 10.1109/TIT.2011.2146010. Google Scholar

[15]

A. Freedman and N. Levanon, Any two $N \times N$ Costas arrays must have at least one common ambiguity sidelobe if $N>3$ - a proof,, Proc. IEEE, 73 (1985), 1530. Google Scholar

[16]

E. N. Gilbert, Latin squares which contain no repeated digrams,, SIAM Review, 7 (1965), 189. doi: 10.1137/1007035. Google Scholar

[17]

S. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13. doi: 10.1016/0097-3165(84)90015-3. Google Scholar

[18]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143. doi: 10.1109/PROC.1984.12994. Google Scholar

[19]

S. Rickard, Database of Costas arrays,, accessed 2012., (2012). Google Scholar

[20]

S. Rickard, Searching for Costas arrays using periodicity properties,, in Proc. 2004 IMA Int. Conf. Math. Signal Proc., (2004). Google Scholar

[21]

J. C. Russo, K. G. Erickson and J. K. Beard, Costas array search technique that maximizes backtrack and symmetry exploitation,, in 44th Annual Conf. Inform. Sci. Systems, (2010). doi: 10.1109/CISS.2010.5464772. Google Scholar

[22]

H. Taylor, Non-attacking rooks with distinct differences,, Technical Report CSI-84-03-02, (1984), 84. Google Scholar

[23]

K. Taylor, S. Rickard and K. Drakakis, On Costas arrays with various types of symmetry,, in 16th Int. Conf. Digital Signal Proc., (2009). doi: 10.1109/ICDSP.2009.5201135. Google Scholar

[24]

J. L. Wodlinger, Costas Arrays, Golomb Rulers and Wavelength Isolation Sequence Pairs,, Master's thesis, (2012). Google Scholar

show all references

References:
[1]

J. K. Beard, Orders three through 100,, Database of Costas arrays, (). Google Scholar

[2]

S. R. Blackburn, T. Etzion, K. M. Martin and M. B. Paterson, Two-dimensional patterns with distinct differences - constructions, bounds, and maximal anticodes,, IEEE Trans. Inform. Theory, 56 (2010), 1216. doi: 10.1109/TIT.2009.2039046. Google Scholar

[3]

C. P. Brown, M. Cenkl, R. A. Games, J. Rushanan, O. Moreno and P. Pei, New enumeration results for Costas arrays,, in Proc. IEEE Int. Symp. Inform. Theory, (1993). doi: 10.1109/ISIT.1993.748721. Google Scholar

[4]

J. P. Costas, A study of a class of detection waveforms having nearly ideal range-Doppler ambiguity properties,, Proc. IEEE, 72 (1984), 996. Google Scholar

[5]

K. Drakakis, A review of Costas arrays,, J. Appl. Math., (2006). doi: 10.1155/JAM/2006/26385. Google Scholar

[6]

K. Drakakis, Open problems in Costas arrays,, preprint, (). Google Scholar

[7]

K. Drakakis, R. Gow, J. Healy and S. Rickard, Cross-correlation properties of Costas arrays and their images under horizontal and vertical flips,, Math. Problems Engin., (2008). doi: 10.1155/2008/369321. Google Scholar

[8]

K. Drakakis, R. Gow and S. Rickard, Interlaced Costas arrays do not exist,, Math. Problems Engin., (2008). doi: 10.1155/2008/456034. Google Scholar

[9]

K. Drakakis, R. Gow and S. Rickard, Common distance vectors between Costas arrays,, Adv. Math. Commun., 3 (2009), 35. doi: 10.3934/amc.2009.3.35. Google Scholar

[10]

K. Drakakis, F. Iorio and S. Rickard, The enumeration of Costas arrays of order 28 and its consequences,, Adv. Math. Commun., 5 (2011), 69. doi: 10.3934/amc.2011.5.69. Google Scholar

[11]

P. Erdős, R. Graham, I. Z. Ruzsa and H. Taylor, Bounds for arrays of dots with distinct slopes or lengths,, Combinatorica, 12 (1992), 39. doi: 10.1007/BF01191203. Google Scholar

[12]

P. Erdős and P. Turán, On a problem of Sidon in additive number theory and on some related problems,, J. London Math. Soc., 16 (1941), 212. Google Scholar

[13]

T. Etzion, Combinatorial designs derived from Costas arrays,, in Sequences: Combinatorics, (1990), 208. Google Scholar

[14]

T. Etzion, Sequence folding, lattice tiling, and multidimensional coding,, IEEE Trans. Inform. Theory, 57 (2011), 4383. doi: 10.1109/TIT.2011.2146010. Google Scholar

[15]

A. Freedman and N. Levanon, Any two $N \times N$ Costas arrays must have at least one common ambiguity sidelobe if $N>3$ - a proof,, Proc. IEEE, 73 (1985), 1530. Google Scholar

[16]

E. N. Gilbert, Latin squares which contain no repeated digrams,, SIAM Review, 7 (1965), 189. doi: 10.1137/1007035. Google Scholar

[17]

S. Golomb, Algebraic constructions for Costas arrays,, J. Combin. Theory Ser. A, 37 (1984), 13. doi: 10.1016/0097-3165(84)90015-3. Google Scholar

[18]

S. W. Golomb and H. Taylor, Constructions and properties of Costas arrays,, Proc. IEEE, 72 (1984), 1143. doi: 10.1109/PROC.1984.12994. Google Scholar

[19]

S. Rickard, Database of Costas arrays,, accessed 2012., (2012). Google Scholar

[20]

S. Rickard, Searching for Costas arrays using periodicity properties,, in Proc. 2004 IMA Int. Conf. Math. Signal Proc., (2004). Google Scholar

[21]

J. C. Russo, K. G. Erickson and J. K. Beard, Costas array search technique that maximizes backtrack and symmetry exploitation,, in 44th Annual Conf. Inform. Sci. Systems, (2010). doi: 10.1109/CISS.2010.5464772. Google Scholar

[22]

H. Taylor, Non-attacking rooks with distinct differences,, Technical Report CSI-84-03-02, (1984), 84. Google Scholar

[23]

K. Taylor, S. Rickard and K. Drakakis, On Costas arrays with various types of symmetry,, in 16th Int. Conf. Digital Signal Proc., (2009). doi: 10.1109/ICDSP.2009.5201135. Google Scholar

[24]

J. L. Wodlinger, Costas Arrays, Golomb Rulers and Wavelength Isolation Sequence Pairs,, Master's thesis, (2012). Google Scholar

[1]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

[2]

Konstantinos Drakakis. On the degrees of freedom of Costas permutations and other constraints. Advances in Mathematics of Communications, 2011, 5 (3) : 435-448. doi: 10.3934/amc.2011.5.435

[3]

Qiu-Sheng Qiu. Optimality conditions for vector equilibrium problems with constraints. Journal of Industrial & Management Optimization, 2009, 5 (4) : 783-790. doi: 10.3934/jimo.2009.5.783

[4]

Chunlin Hao, Xinwei Liu. A trust-region filter-SQP method for mathematical programs with linear complementarity constraints. Journal of Industrial & Management Optimization, 2011, 7 (4) : 1041-1055. doi: 10.3934/jimo.2011.7.1041

[5]

Jinyu Dai, Shu-Cherng Fang, Wenxun Xing. Recovering optimal solutions via SOC-SDP relaxation of trust region subproblem with nonintersecting linear constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1677-1699. doi: 10.3934/jimo.2018117

[6]

Yongluo Cao, Stefano Luzzatto, Isabel Rios. Some non-hyperbolic systems with strictly non-zero Lyapunov exponents for all invariant measures: Horseshoes with internal tangencies. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 61-71. doi: 10.3934/dcds.2006.15.61

[7]

Jaume Llibre, Jesús S. Pérez del Río, J. Angel Rodríguez. Structural stability of planar semi-homogeneous polynomial vector fields applications to critical points and to infinity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 809-828. doi: 10.3934/dcds.2000.6.809

[8]

Lev M. Lerman, Elena V. Gubina. Nonautonomous gradient-like vector fields on the circle: Classification, structural stability and autonomization. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-27. doi: 10.3934/dcdss.2020076

[9]

Mohammad Safdari. The regularity of some vector-valued variational inequalities with gradient constraints. Communications on Pure & Applied Analysis, 2018, 17 (2) : 413-428. doi: 10.3934/cpaa.2018023

[10]

Ming Gao, Jonathan J. Wylie, Qiang Zhang. Inelastic Collapse in a Corner. Communications on Pure & Applied Analysis, 2009, 8 (1) : 275-293. doi: 10.3934/cpaa.2009.8.275

[11]

Konstantinos Drakakis, Scott Rickard. On the generalization of the Costas property in the continuum. Advances in Mathematics of Communications, 2008, 2 (2) : 113-130. doi: 10.3934/amc.2008.2.113

[12]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[13]

Anurag Jayswala, Tadeusz Antczakb, Shalini Jha. Second order modified objective function method for twice differentiable vector optimization problems over cone constraints. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 133-145. doi: 10.3934/naco.2019010

[14]

Konstantinos Drakakis. On the generalization of the Costas property in higher dimensions. Advances in Mathematics of Communications, 2010, 4 (1) : 1-22. doi: 10.3934/amc.2010.4.1

[15]

N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco, G. B. Tanoglu. Analysis of a corner layer problem in anisotropic interfaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 237-255. doi: 10.3934/dcdsb.2006.6.237

[16]

Pierre-Étienne Druet. Higher $L^p$ regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 475-496. doi: 10.3934/dcdss.2015.8.475

[17]

Jingzhi Tie, Qing Zhang. Switching between a pair of stocks: An optimal trading rule. Mathematical Control & Related Fields, 2018, 8 (3&4) : 965-999. doi: 10.3934/mcrf.2018042

[18]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard, John Walsh. Results of the enumeration of Costas arrays of order 29. Advances in Mathematics of Communications, 2011, 5 (3) : 547-553. doi: 10.3934/amc.2011.5.547

[19]

Konstantinos Drakakis, Francesco Iorio, Scott Rickard. The enumeration of Costas arrays of order 28 and its consequences. Advances in Mathematics of Communications, 2011, 5 (1) : 69-86. doi: 10.3934/amc.2011.5.69

[20]

Bo Wang, Jiguang Bao. Mirror symmetry for a Hessian over-determined problem and its generalization. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2305-2316. doi: 10.3934/cpaa.2014.13.2305

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]