\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric

Abstract Related Papers Cited by
  • We discuss the functional codes $C_h(\mathcal{Q}_N)$, for small $h\geq 3$, $q>9$, and for $N\geq 6$. This continues the study of different classes of functional codes, performed on functional codes arising from quadrics and Hermitian varieties. Here, we consider the functional codes arising from the intersections of the algebraic hypersurfaces of small degree $h$ with a given non-singular quadric $\mathcal{Q}_N$ in PG$(N,q)$.
    Mathematics Subject Classification: Primary: 51E20, 94B05; Secondary: 05B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Bartoli, M. De Boeck, S. Fanali and L. Storme, On the functional codes defined by quadrics and Hermitian varieties, Des. Codes Cryptogr., 71 (2014), 21-46.doi: 10.1007/s10623-012-9712-4.

    [2]

    A. Cafure and G. Matera, Improved explicit estimates on the number of solutions of equations over a finite field, Finite Fields Appl., 12 (2006), 155-185.doi: 10.1016/j.ffa.2005.03.003.

    [3]

    F. A. B. Edoukou, A. Hallez, F. Rodier and L. Storme, A study of intersections of quadrics having applications on the small weight codewords of the functional codes $C_2(Q)$, $Q$ a non-singular quadric, J. Pure Appl. Algebra, 214 (2010), 1729-1739.doi: 10.1016/j.jpaa.2009.12.017.

    [4]

    F. A. B. Edoukou, A. Hallez, F. Rodier and L. Storme, On the small weight codewords of the functional codes $C_{herm}(X)$, $X$ a non-singular Hermitian variety, Des. Codes Cryptogr., 56 (2010), 219-233.doi: 10.1007/s10623-010-9401-0.

    [5]

    A. Hallez and L. Storme, Functional codes arising from quadric intersections with Hermitian varieties, Finite Fields Appl., 16 (2010), 27-35.doi: 10.1016/j.ffa.2009.11.005.

    [6]

    J. W. P. Hirschfeld and J. A. Thas, General Galois Geometries, The Clarendon Press, Oxford University Press, 1991.

    [7]

    G. Lachaud, Number of points of plane sections and linear codes defined on algebraic varieties, in Arithmetic, Geometry, and Coding Theory, Walter De Gruyter, Berlin, 1996, 77-104.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(95) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return