August  2014, 8(3): 313-322. doi: 10.3934/amc.2014.8.313

Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$

1. 

Department of Mathematics, Yildiz Technical University, 34210, Istanbul, Turkey, Turkey

2. 

Department of Mathematics, Fatih University, 34500, Istanbul

Received  May 2013 Revised  July 2013 Published  August 2014

In this paper skew cyclic codes over the the family of rings $\mathbb{F}_q+v\mathbb{F}_q$ with $v^2=v$ are studied for the first time in its generality. Structural properties of skew cyclic codes over $\mathbb{F}_q+v\mathbb{F}_q$ are investigated through a decomposition theorem. It is shown that skew cyclic codes over this ring are principally generated. The idempotent generators of skew-cyclic codes over $\mathbb{F}_q$ and $\mathbb{F}_q+v\mathbb{F}_q$ have been considered for the first time in literature. Moreover, a BCH type bound is presented for the parameters of these codes.
Citation: Fatmanur Gursoy, Irfan Siap, Bahattin Yildiz. Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$. Advances in Mathematics of Communications, 2014, 8 (3) : 313-322. doi: 10.3934/amc.2014.8.313
References:
[1]

T. Abualrub, A. Ghrayeb, N. Aydin and I. Siap, On the construction of skew quasi-cyclic codes,, IEEE Trans. Inform. Theory, 56 (2010), 2080.  doi: 10.1109/TIT.2010.2044062.  Google Scholar

[2]

T. Abualrub and P. Seneviratne, Skew codes over rings,, in Proc. IMECS, (2010).   Google Scholar

[3]

D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes,, Appl. Algebra Eng. Comm., 18 (2007), 379.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[4]

D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273.  doi: 10.3934/amc.2008.2.273.  Google Scholar

[5]

D. Boucher and F. Ulmer, Coding with skew polynomial rings,, J. Symb. Comput., 44 (2009), 1644.  doi: 10.1016/j.jsc.2007.11.008.  Google Scholar

[6]

J. Gao, Skew cyclic codes over $\mathbb F_p+v\mathbb F_p$,, J. Appl. Math. Inform., 31 (2013), 337.  doi: 10.14317/jami.2013.337.  Google Scholar

[7]

A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[8]

S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings,, Adv. Math. Commun., 6 (2012), 29.  doi: 10.3934/amc.2012.6.39.  Google Scholar

[9]

B. R. McDonald, Finite Rings with Identity,, Marcel Dekker Inc., (1974).   Google Scholar

[10]

I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length,, Int. J. Inform. Coding Theory, 2 (2011), 10.  doi: 10.1504/IJICOT.2011.044674.  Google Scholar

[11]

X. Q. Xu and S. X. Zhu, Skew cyclic codes over the ring $\mathbb F_4+v\mathbb F_4$,, J. Hefei Univ. Technol. Nat. Sci., 34 (2011), 1429.   Google Scholar

[12]

S. Zhu, Y. Wang and M. Shi, Some results on cyclic codes over $\mathbb F_2+v\mathbb F_2$,, IEEE Trans. Inform. Theory, 56 (2010), 1680.  doi: 10.1109/TIT.2010.2040896.  Google Scholar

show all references

References:
[1]

T. Abualrub, A. Ghrayeb, N. Aydin and I. Siap, On the construction of skew quasi-cyclic codes,, IEEE Trans. Inform. Theory, 56 (2010), 2080.  doi: 10.1109/TIT.2010.2044062.  Google Scholar

[2]

T. Abualrub and P. Seneviratne, Skew codes over rings,, in Proc. IMECS, (2010).   Google Scholar

[3]

D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes,, Appl. Algebra Eng. Comm., 18 (2007), 379.  doi: 10.1007/s00200-007-0043-z.  Google Scholar

[4]

D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings,, Adv. Math. Commun., 2 (2008), 273.  doi: 10.3934/amc.2008.2.273.  Google Scholar

[5]

D. Boucher and F. Ulmer, Coding with skew polynomial rings,, J. Symb. Comput., 44 (2009), 1644.  doi: 10.1016/j.jsc.2007.11.008.  Google Scholar

[6]

J. Gao, Skew cyclic codes over $\mathbb F_p+v\mathbb F_p$,, J. Appl. Math. Inform., 31 (2013), 337.  doi: 10.14317/jami.2013.337.  Google Scholar

[7]

A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes,, IEEE Trans. Inform. Theory, 40 (1994), 301.  doi: 10.1109/18.312154.  Google Scholar

[8]

S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings,, Adv. Math. Commun., 6 (2012), 29.  doi: 10.3934/amc.2012.6.39.  Google Scholar

[9]

B. R. McDonald, Finite Rings with Identity,, Marcel Dekker Inc., (1974).   Google Scholar

[10]

I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length,, Int. J. Inform. Coding Theory, 2 (2011), 10.  doi: 10.1504/IJICOT.2011.044674.  Google Scholar

[11]

X. Q. Xu and S. X. Zhu, Skew cyclic codes over the ring $\mathbb F_4+v\mathbb F_4$,, J. Hefei Univ. Technol. Nat. Sci., 34 (2011), 1429.   Google Scholar

[12]

S. Zhu, Y. Wang and M. Shi, Some results on cyclic codes over $\mathbb F_2+v\mathbb F_2$,, IEEE Trans. Inform. Theory, 56 (2010), 1680.  doi: 10.1109/TIT.2010.2040896.  Google Scholar

[1]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

[2]

San Ling, Buket Özkaya. New bounds on the minimum distance of cyclic codes. Advances in Mathematics of Communications, 2021, 15 (1) : 1-8. doi: 10.3934/amc.2020038

[3]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[4]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[5]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[6]

Yuan Cao, Yonglin Cao, Hai Q. Dinh, Ramakrishna Bandi, Fang-Wei Fu. An explicit representation and enumeration for negacyclic codes of length $ 2^kn $ over $ \mathbb{Z}_4+u\mathbb{Z}_4 $. Advances in Mathematics of Communications, 2021, 15 (2) : 291-309. doi: 10.3934/amc.2020067

[7]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[8]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[9]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[10]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[11]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[12]

Karan Khathuria, Joachim Rosenthal, Violetta Weger. Encryption scheme based on expanded Reed-Solomon codes. Advances in Mathematics of Communications, 2021, 15 (2) : 207-218. doi: 10.3934/amc.2020053

[13]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[14]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[15]

Sabira El Khalfaoui, Gábor P. Nagy. On the dimension of the subfield subcodes of 1-point Hermitian codes. Advances in Mathematics of Communications, 2021, 15 (2) : 219-226. doi: 10.3934/amc.2020054

[16]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[17]

Fengwei Li, Qin Yue, Xiaoming Sun. The values of two classes of Gaussian periods in index 2 case and weight distributions of linear codes. Advances in Mathematics of Communications, 2021, 15 (1) : 131-153. doi: 10.3934/amc.2020049

[18]

Hongming Ru, Chunming Tang, Yanfeng Qi, Yuxiao Deng. A construction of $ p $-ary linear codes with two or three weights. Advances in Mathematics of Communications, 2021, 15 (1) : 9-22. doi: 10.3934/amc.2020039

[19]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

[20]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (301)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]