\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Construction of skew cyclic codes over $\mathbb F_q+v\mathbb F_q$

Abstract Related Papers Cited by
  • In this paper skew cyclic codes over the the family of rings $\mathbb{F}_q+v\mathbb{F}_q$ with $v^2=v$ are studied for the first time in its generality. Structural properties of skew cyclic codes over $\mathbb{F}_q+v\mathbb{F}_q$ are investigated through a decomposition theorem. It is shown that skew cyclic codes over this ring are principally generated. The idempotent generators of skew-cyclic codes over $\mathbb{F}_q$ and $\mathbb{F}_q+v\mathbb{F}_q$ have been considered for the first time in literature. Moreover, a BCH type bound is presented for the parameters of these codes.
    Mathematics Subject Classification: Primary: 94B15, 94B05; Secondary: 94B99.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Abualrub, A. Ghrayeb, N. Aydin and I. Siap, On the construction of skew quasi-cyclic codes, IEEE Trans. Inform. Theory, 56 (2010), 2080-2090.doi: 10.1109/TIT.2010.2044062.

    [2]

    T. Abualrub and P. Seneviratne, Skew codes over rings, in Proc. IMECS, Hong Kong, 2010.

    [3]

    D. Boucher, W. Geiselmann and F. Ulmer, Skew cyclic codes, Appl. Algebra Eng. Comm., 18 (2007), 379-389.doi: 10.1007/s00200-007-0043-z.

    [4]

    D. Boucher, P. Solé and F. Ulmer, Skew constacyclic codes over Galois rings, Adv. Math. Commun., 2 (2008), 273-292.doi: 10.3934/amc.2008.2.273.

    [5]

    D. Boucher and F. Ulmer, Coding with skew polynomial rings, J. Symb. Comput., 44 (2009), 1644-1656.doi: 10.1016/j.jsc.2007.11.008.

    [6]

    J. Gao, Skew cyclic codes over $\mathbb F_p+v\mathbb F_p$, J. Appl. Math. Inform., 31 (2013), 337-342.doi: 10.14317/jami.2013.337.

    [7]

    A. R. Hammons Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb Z_4$-linearity of Kerdock, Preparata, Goethals, and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.doi: 10.1109/18.312154.

    [8]

    S. Jitman, S. Ling and P. Udomkavanich, Skew constacyclic codes over finite chain rings, Adv. Math. Commun., 6 (2012), 29-63.doi: 10.3934/amc.2012.6.39.

    [9]

    B. R. McDonald, Finite Rings with Identity, Marcel Dekker Inc., New York, 1974.

    [10]

    I. Siap, T. Abualrub, N. Aydin and P. Seneviratne, Skew cyclic codes of arbitrary length, Int. J. Inform. Coding Theory, 2 (2011), 10-20.doi: 10.1504/IJICOT.2011.044674.

    [11]

    X. Q. Xu and S. X. Zhu, Skew cyclic codes over the ring $\mathbb F_4+v\mathbb F_4$, J. Hefei Univ. Technol. Nat. Sci., 34 (2011), 1429-1432.

    [12]

    S. Zhu, Y. Wang and M. Shi, Some results on cyclic codes over $\mathbb F_2+v\mathbb F_2$, IEEE Trans. Inform. Theory, 56 (2010), 1680-1684.doi: 10.1109/TIT.2010.2040896.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(1086) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return