\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

How to obtain division algebras used for fast-decodable space-time block codes

Abstract / Introduction Related Papers Cited by
  • We present families of unital algebras obtained through a doubling process from a cyclic central simple algebra $D=(K/F,\sigma,c)$, employing a $K$-automorphism $\tau$ and an element $d\in D^\times$. These algebras appear in the construction of iterated space-time block codes. We give conditions when these iterated algebras are division which can be used to construct fully diverse iterated codes. We also briefly look at algebras (and codes) obtained from variations of this method.
    Mathematics Subject Classification: Primary: 17A35, 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. A. Albert, On the power-associativity of rings, Summa Brazil. Math., 2 (1948), 21-33.

    [2]

    G. Berhuy and F. Oggier, Space-time codes from crossed product algebras of degree 4, in AAECC 2007 (eds. S. Boztaş and H.F. Lu), 2007, 90-99.doi: 10.1007/978-3-540-77224-8_13.

    [3]

    G. Berhuy and F. Oggier, On the existence of perfect space-time codes, IEEE Trans. Inf. Theory, 55 (2009), 2078-2082.doi: 10.1109/TIT.2009.2016033.

    [4]

    G. Berhuy and F. Oggier, Introduction to Central Simple Algebras and their Applications to Wireless Communication, AMS, 2013.

    [5]

    A. Deajim and D. Grant, Space-time codes and nonassociative division algebras over elliptic curves, Contemp. Math., 463 (2008), 29-44.doi: 10.1090/conm/463/09044.

    [6]

    L. E. Dickson, Linear Algebras with associativity not assumed, Duke Math. J., 1 (1935), 113-125.doi: 10.1215/S0012-7094-35-00112-0.

    [7]

    P. Elia, A. Sethuraman and P. V. Kumar, Perfect space-time codes with minimum and non-minimum delay for any number of antennas, in International Conference on Wireless Networks, Communications and Mobile Computing, IEEE, 2005, 722-727.

    [8]

    C. Hollanti, J. Lahtonen, K. Rauto and R. Vehkalahti, Optimal lattices for MIMO codes from division algebras, IEEE International Symposium on Information Theory, Seattle, 2006, 783-787.

    [9]

    T. Y. Lam, Quadratic Forms over Fields, AMS, 2005.

    [10]

    N. Markin and F. Oggier, Iterated space-time code constructions from cyclic algebras, IEEE Trans. Inf. Theory, 59 (2013), 5966-5979.doi: 10.1109/TIT.2013.2266397.

    [11]

    F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, Perfect space-time block codes, IEEE Trans. Inf. Theory, 32 (2006), 3885-3902.doi: 10.1109/TIT.2006.880010.

    [12]

    S. Pumplün, Tensor products of central simple algebras and fast-decodable space-time block codes, preprint, available from: http://molle.fernuni-hagen.de/~loos/jordan/index.html

    [13]

    S. Pumplün and V. Astier, Nonassociative quaternion algebras over rings, Israel J. Math., 155 (2006), 125-147.doi: 10.1007/BF02773952.

    [14]

    S. Pumplün and T. Unger, Space-time block codes from nonassociative division algebras, Adv. Math. Commun., 5 (2011), 609-629.doi: 10.3934/amc.2011.5.449.

    [15]

    R. D. Schafer, An introduction to nonassociative algebras, Dover Publ. Inc., New York, 1995.

    [16]

    B. A. Sethuraman, B. S. Rajan and V. Sashidhar, Full diversity, high rate space time block codes from division algebras, IEEE Trans. Inf. Theory, 49 (2003), 2596-2616.doi: 10.1109/TIT.2003.817831.

    [17]

    K. P. Srinath and B. S. Rajan, Fast decodable MIDO codes with large coding gain, in 2013 IEEE International Symposium on Information Theory Proceedings (ISIT), 2013, 2910-2914.doi: 10.1109/TIT.2013.2292513.

    [18]

    A. Steele, Nonassociative cyclic algebras, Israel J. Math., 200 (2014), 361-387.doi: 10.1007/s11856-014-0021-7.

    [19]

    A. Steele, S. Pumplün and F. Oggier, MIDO space-time codes from associative and non-associative cyclic algebras, Information Theory Workshop, IEEE, 2012, 192-196.

    [20]

    R. Vehkalahti, C. Hollanti and F. Oggier, Fast-decodable asymmetric space-time codes from division algebras, IEEE Trans. Inf. Theory, 58 (2012), 2362-2385.doi: 10.1109/TIT.2011.2176310.

    [21]

    W. C. Waterhouse, Nonassociative quaternion algebras, Algebras Groups Geom., 4 (1987), 365-378.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return