\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions

Abstract / Introduction Related Papers Cited by
  • In order to evaluate the goodness of frequency hopping (FH) sequence design, the periodic Hamming correlation function is used as an important measure. Aperiodic Hamming correlation of FH sequences matters in real applications, while it received little attraction in the literature compared with periodic Hamming correlation. In this paper, an upper bound on the family size of FH sequences, with respect to the size of the frequency slot set, the sequence length, the maximum aperiodic Hamming correlation is established. Further, a construction of optimal FH sequence sets under aperiodic Hamming correlation from Reed-Solomon codes is presented, whose parameters meet the upper bound with equality. From generalized $m$ sequences (GM sequences) and generalized Gordon-Mills-Welch sequences (GGMW sequences), two classes of optimal FH sequence sets under aperiodic Hamming correlation are also presented, whose parameters meet the upper bound with equality.
    Mathematics Subject Classification: Primary: 94A55; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]
    [2]

    J. H. Chung, Y. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791.doi: 10.1109/TIT.2009.2032742.

    [3]

    C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.doi: 10.1109/TIT.2009.2021366.

    [4]

    C. Ding, Y. Yang and X. H. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 55 (2010), 3605-3612.doi: 10.1109/TIT.2010.2048504.

    [5]

    Y. C. Eun, S. Y. Jin, Y. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442.doi: 10.1109/TIT.2004.834792.

    [6]

    P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, London, 1996.

    [7]

    P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency-hopping CDMA systems, IEEE Trans. Wireless Commun., 4 (2005), 2836-2842.

    [8]

    G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.doi: 10.1109/TIT.2008.2009856.

    [9]

    S. W. Golomb, A mathematical theory of discrete classification, in Proc. 4th London Symp. Inf. Theory, 1961, 404-425.

    [10]

    S. W. Golomb, Optimal frequency hopping sequences for multiple access, Proc. Symp. Spread Spectrum Commun., 1 (1973), 33-35.

    [11]

    S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, 2005.doi: 10.1017/CBO9780511546907.

    [12]

    S. W. Golomb, B. Gordon and L. R. Welch, Comma-free codes, Canad. J. Math., 10 (1958), 202-209.doi: 10.4153/CJM-1958-023-9.

    [13]

    T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory (eds. V. Pless and C. Huffman), Elsevier, 1998, 1767-1853.

    [14]

    A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94.

    [15]

    R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997.

    [16]

    X. H. Niu, D. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Ser. F, 55 (2012), 2207-2215.doi: 10.1007/s11432-012-4620-9.

    [17]

    D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154.doi: 10.1109/TIT.2004.833362.

    [18]

    D. Y. Peng, P. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone, Sci. China Ser. F, 49 (2006), 208-218.doi: 10.1007/s11432-006-0208-6.

    [19]

    D. Y. Peng, T. Peng, X. H. Tang and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, in Proc. 5th Int. Conf. Sequences Appl., 2008, 188-196.doi: 10.1007/978-3-540-85912-3_18.

    [20]

    I. S. Reed, $k$th-order near-orthogonal codes, IEEE Trans. Inf. Theory, 17 (1971), 116-117.

    [21]

    I. S. Reed and H. Blasbalg, Multipath tolerant ranging and data transfer techniques for air-to-ground and ground-to-air links, Proc. IEEE, 58 (1970), 422-429.doi: 10.1109/PROC.1970.7649.

    [22]

    H. Y. Song, I. S. Reed and S. W. Golomb, On the nonperiodic cyclic equivalent classes of Reed-Solomon codes, IEEE Trans. Inf. Theory, 39 (1993), 1431-1434.doi: 10.1109/18.243465.

    [23]

    P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503.doi: 10.1109/18.681324.

    [24]

    Y. Yang, X. H. Tang, P. Udaya and D. Y. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.doi: 10.1109/TIT.2011.2162571.

    [25]

    Z. C. Zhou, X. H. Tang, X. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458.doi: 10.1109/TIT.2011.2167126.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(183) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return