Citation: |
[1] |
Specification of the bluetooth system: core, Bluetooth S. I. G. Inc., available from: http://www.bluetooth.com |
[2] |
J. H. Chung, Y. K. Han and K. Yang, New classes of optimal frequency-hopping sequences by interleaving techniques, IEEE Trans. Inf. Theory, 55 (2009), 5783-5791.doi: 10.1109/TIT.2009.2032742. |
[3] |
C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.doi: 10.1109/TIT.2009.2021366. |
[4] |
C. Ding, Y. Yang and X. H. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 55 (2010), 3605-3612.doi: 10.1109/TIT.2010.2048504. |
[5] |
Y. C. Eun, S. Y. Jin, Y. P. Hong and H. Y. Song, Frequency hopping sequences with optimal partial autocorrelation properties, IEEE Trans. Inf. Theory, 50 (2004), 2438-2442.doi: 10.1109/TIT.2004.834792. |
[6] |
P. Z. Fan and M. Darnell, Sequence Design for Communications Applications, Research Studies Press, London, 1996. |
[7] |
P. Z. Fan, M. H. Lee and D. Y. Peng, New family of hopping sequences for time/frequency-hopping CDMA systems, IEEE Trans. Wireless Commun., 4 (2005), 2836-2842. |
[8] |
G. Ge, Y. Miao and Z. Yao, Optimal frequency hopping sequences: auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.doi: 10.1109/TIT.2008.2009856. |
[9] |
S. W. Golomb, A mathematical theory of discrete classification, in Proc. 4th London Symp. Inf. Theory, 1961, 404-425. |
[10] |
S. W. Golomb, Optimal frequency hopping sequences for multiple access, Proc. Symp. Spread Spectrum Commun., 1 (1973), 33-35. |
[11] |
S. W. Golomb and G. Gong, Signal Design for Good Correlation: For Wireless Communication, Cryptography and Radar, Cambridge Univ. Press, 2005.doi: 10.1017/CBO9780511546907. |
[12] |
S. W. Golomb, B. Gordon and L. R. Welch, Comma-free codes, Canad. J. Math., 10 (1958), 202-209.doi: 10.4153/CJM-1958-023-9. |
[13] |
T. Helleseth and P. V. Kumar, Sequences with low correlation, in Handbook of Coding Theory (eds. V. Pless and C. Huffman), Elsevier, 1998, 1767-1853. |
[14] |
A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties, IEEE Trans. Inf. Theory, 20 (1974), 90-94. |
[15] |
R. Lidl and H. Niederreiter, Finite Fields, Cambridge Univ. Press, 1997. |
[16] |
X. H. Niu, D. Y. Peng and Z. C. Zhou, Frequency/time hopping sequence sets with optimal partial Hamming correlation properties, Sci. China Ser. F, 55 (2012), 2207-2215.doi: 10.1007/s11432-012-4620-9. |
[17] |
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross-correlations of frequency-hopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 2149-2154.doi: 10.1109/TIT.2004.833362. |
[18] |
D. Y. Peng, P. Z. Fan and M. H. Lee, Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone, Sci. China Ser. F, 49 (2006), 208-218.doi: 10.1007/s11432-006-0208-6. |
[19] |
D. Y. Peng, T. Peng, X. H. Tang and X. H. Niu, A class of optimal frequency hopping sequences based upon the theory of power residues, in Proc. 5th Int. Conf. Sequences Appl., 2008, 188-196.doi: 10.1007/978-3-540-85912-3_18. |
[20] |
I. S. Reed, $k$th-order near-orthogonal codes, IEEE Trans. Inf. Theory, 17 (1971), 116-117. |
[21] |
I. S. Reed and H. Blasbalg, Multipath tolerant ranging and data transfer techniques for air-to-ground and ground-to-air links, Proc. IEEE, 58 (1970), 422-429.doi: 10.1109/PROC.1970.7649. |
[22] |
H. Y. Song, I. S. Reed and S. W. Golomb, On the nonperiodic cyclic equivalent classes of Reed-Solomon codes, IEEE Trans. Inf. Theory, 39 (1993), 1431-1434.doi: 10.1109/18.243465. |
[23] |
P. Udaya and M. U. Siddiqi, Optimal large linear complexity frequency hopping patterns derived from polynomial residue class rings, IEEE Trans. Inf. Theory, 44 (1998), 1492-1503.doi: 10.1109/18.681324. |
[24] |
Y. Yang, X. H. Tang, P. Udaya and D. Y. Peng, New bound on frequency hopping sequence sets and its optimal constructions, IEEE Trans. Inf. Theory, 57 (2011), 7605-7613.doi: 10.1109/TIT.2011.2162571. |
[25] |
Z. C. Zhou, X. H. Tang, X. H. Niu and P. Udaya, New classes of frequency-hopping sequences with optimal partial correlation, IEEE Trans. Inf. Theory, 58 (2012), 453-458.doi: 10.1109/TIT.2011.2167126. |