November  2014, 8(4): 389-406. doi: 10.3934/amc.2014.8.389

Comparison of scalar multiplication on real hyperelliptic curves

1. 

Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, Canada

2. 

Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, Canada, Canada

Received  March 2014 Revised  September 2014 Published  November 2014

Real hyperelliptic curves admit two structures suitable for cryptography --- the Jacobian (a finite abelian group) and the infrastructure. Mireles Morales described precisely the relationship between these two structures, and made the assertion that when implemented with balanced divisor arithmetic, the Jacobian generically yields more efficient arithmetic than the infrastructure for cryptographic applications. We confirm that this assertion holds for genus two curves, through rigorous analysis and the first detailed numerical performance comparisons, showing that cryptographic key agreement can be performed in the Jacobian without any extra operations beyond those required for basic scalar multiplication. We also present a modified version of Mireles Morales' map that more clearly reveals the algorithmic relationship between the two structures.
Citation: Michael J. Jacobson, Jr., Monireh Rezai Rad, Renate Scheidler. Comparison of scalar multiplication on real hyperelliptic curves. Advances in Mathematics of Communications, 2014, 8 (4) : 389-406. doi: 10.3934/amc.2014.8.389
References:
[1]

E. Barker, W. Barker, W. Polk and M. Smid, Recommendation for key management - part 1: General (revised),, NIST Special Publication 800-57, (2007), 800.   Google Scholar

[2]

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercouteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography,, Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420034981.  Google Scholar

[3]

W. Diffie and M. Hellman, New directions in cryptography,, IEEE Trans. Inf. Theory, 22 (1976), 472.  doi: 10.1109/TIT.1976.1055638.  Google Scholar

[4]

S. Erickson, M. J. Jacobson, Jr. and A. Stein, Explicit formulas for real hyperelliptic curves of genus $2$ in affine representation,, Adv. Math. Commun., 5 (2011), 623.  doi: 10.3934/amc.2011.5.623.  Google Scholar

[5]

F. Fontein, Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures,, Adv. Math. Commun., 2 (2008), 293.  doi: 10.3934/amc.2008.2.293.  Google Scholar

[6]

F. Fontein, Holes in the infrastructure of global hyperelliptic function fields,, preprint, ().   Google Scholar

[7]

E. Friedman and L. C. Washington, On the distribution of divisor class groups of curves over a finite field,, Théorie des Nombres (Québec, (1989), 227.   Google Scholar

[8]

S. D. Galbraith, M. Harrison and D. J. Mireles Morales, Efficient hyperelliptic curve arithmetic using balanced representation for divisors,, in Algorithmic Number Theory - ANTS 2008 (Berlin), (2008), 342.  doi: 10.1007/978-3-540-79456-1_23.  Google Scholar

[9]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic protocols on real hyperelliptic curves,, Adv. Math. Commun., 1 (2007), 197.  doi: 10.3934/amc.2007.1.197.  Google Scholar

[10]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Fast arithmetic on hyperelliptic curves via continued fraction expansions,, in Advances in Coding Theory and Cryptology (eds. T. Shaska, (2007), 201.  doi: 10.1142/9789812772022_0013.  Google Scholar

[11]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic aspects of real hyperelliptic curves,, Tatra Mountains Math. Publ., 40 (2010), 1.  doi: 10.2478/v10127-010-0030-9.  Google Scholar

[12]

N. Koblitz, Hyperelliptic cryptosystems,, J. Cryptology, 1 (1989), 139.  doi: 10.1007/BF02252872.  Google Scholar

[13]

T. Lange, Formulae for arithmetic on genus 2 hyperelliptic curves,, Appl. Algebra Eng. Commun. Comput., 15 (2005), 295.  doi: 10.1007/s00200-004-0154-8.  Google Scholar

[14]

D. J. Mireles Morales, An analysis of the infrastructure in real function fields,, Cryptology eprint archive no. 2008/299, (2008).   Google Scholar

[15]

R. Scheidler, J. A. Buchmann and H. C. Williams, A key exchange protocol using real quadratic fields,, J. Cryptology, 7 (1994), 171.  doi: 10.1007/BF02318548.  Google Scholar

[16]

R. Scheidler, A. Stein and H. C. Williams, Key-exchange in real quadratic congruence function fields,, Des. Codes Crypt., 7 (1996), 153.  doi: 10.1007/BF00125081.  Google Scholar

[17]

V. Shoup, NTL: A Library for doing Number Theory (version 5.4.2),, , (2008).   Google Scholar

[18]

A. Stein, Explicit infrastructure for real quadratic function fields and real hyperelliptic curves,, Glas. Mat. Ser. III, 44(64) (2009), 89.  doi: 10.3336/gm.44.1.05.  Google Scholar

show all references

References:
[1]

E. Barker, W. Barker, W. Polk and M. Smid, Recommendation for key management - part 1: General (revised),, NIST Special Publication 800-57, (2007), 800.   Google Scholar

[2]

H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercouteren, Handbook of Elliptic and Hyperelliptic Curve Cryptography,, Chapman & Hall/CRC, (2006).  doi: 10.1201/9781420034981.  Google Scholar

[3]

W. Diffie and M. Hellman, New directions in cryptography,, IEEE Trans. Inf. Theory, 22 (1976), 472.  doi: 10.1109/TIT.1976.1055638.  Google Scholar

[4]

S. Erickson, M. J. Jacobson, Jr. and A. Stein, Explicit formulas for real hyperelliptic curves of genus $2$ in affine representation,, Adv. Math. Commun., 5 (2011), 623.  doi: 10.3934/amc.2011.5.623.  Google Scholar

[5]

F. Fontein, Groups from cyclic infrastructures and Pohlig-Hellman in certain infrastructures,, Adv. Math. Commun., 2 (2008), 293.  doi: 10.3934/amc.2008.2.293.  Google Scholar

[6]

F. Fontein, Holes in the infrastructure of global hyperelliptic function fields,, preprint, ().   Google Scholar

[7]

E. Friedman and L. C. Washington, On the distribution of divisor class groups of curves over a finite field,, Théorie des Nombres (Québec, (1989), 227.   Google Scholar

[8]

S. D. Galbraith, M. Harrison and D. J. Mireles Morales, Efficient hyperelliptic curve arithmetic using balanced representation for divisors,, in Algorithmic Number Theory - ANTS 2008 (Berlin), (2008), 342.  doi: 10.1007/978-3-540-79456-1_23.  Google Scholar

[9]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic protocols on real hyperelliptic curves,, Adv. Math. Commun., 1 (2007), 197.  doi: 10.3934/amc.2007.1.197.  Google Scholar

[10]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Fast arithmetic on hyperelliptic curves via continued fraction expansions,, in Advances in Coding Theory and Cryptology (eds. T. Shaska, (2007), 201.  doi: 10.1142/9789812772022_0013.  Google Scholar

[11]

M. J. Jacobson, Jr., R. Scheidler and A. Stein, Cryptographic aspects of real hyperelliptic curves,, Tatra Mountains Math. Publ., 40 (2010), 1.  doi: 10.2478/v10127-010-0030-9.  Google Scholar

[12]

N. Koblitz, Hyperelliptic cryptosystems,, J. Cryptology, 1 (1989), 139.  doi: 10.1007/BF02252872.  Google Scholar

[13]

T. Lange, Formulae for arithmetic on genus 2 hyperelliptic curves,, Appl. Algebra Eng. Commun. Comput., 15 (2005), 295.  doi: 10.1007/s00200-004-0154-8.  Google Scholar

[14]

D. J. Mireles Morales, An analysis of the infrastructure in real function fields,, Cryptology eprint archive no. 2008/299, (2008).   Google Scholar

[15]

R. Scheidler, J. A. Buchmann and H. C. Williams, A key exchange protocol using real quadratic fields,, J. Cryptology, 7 (1994), 171.  doi: 10.1007/BF02318548.  Google Scholar

[16]

R. Scheidler, A. Stein and H. C. Williams, Key-exchange in real quadratic congruence function fields,, Des. Codes Crypt., 7 (1996), 153.  doi: 10.1007/BF00125081.  Google Scholar

[17]

V. Shoup, NTL: A Library for doing Number Theory (version 5.4.2),, , (2008).   Google Scholar

[18]

A. Stein, Explicit infrastructure for real quadratic function fields and real hyperelliptic curves,, Glas. Mat. Ser. III, 44(64) (2009), 89.  doi: 10.3336/gm.44.1.05.  Google Scholar

[1]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[2]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020271

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

[Back to Top]