November  2014, 8(4): 407-425. doi: 10.3934/amc.2014.8.407

Subexponential time relations in the class group of large degree number fields

1. 

Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4, Canada

Received  January 2014 Revised  June 2014 Published  November 2014

Hafner and McCurley described a subexponential time algorithm to compute the ideal class group of a quadratic field, which was generalized to families of fixed degree number fields by Buchman. The main ingredient of this method is a subexponential time algorithm to derive relations between primes of norm bounded by a subexponential value. Besides ideal class group computation, this was successfully used to evaluate isogenies, compute endomorphism rings, solve the discrete logarithm problem in the class group and find a generator of a principal ideal. In this paper, we present a generalization of the relation search to classes of number fields with degree growing to infinity.
Citation: Jean-François Biasse. Subexponential time relations in the class group of large degree number fields. Advances in Mathematics of Communications, 2014, 8 (4) : 407-425. doi: 10.3934/amc.2014.8.407
References:
[1]

L. Adleman and J. DeMarrais, A subexponential algorithm for discrete logarithms over all finite fields,, in Adv. Crypt. - CRYPTO '93 (ed. D. Stinson), (1994), 147.  doi: 10.1007/3-540-48329-2_13.  Google Scholar

[2]

J.-F. Biasse, An $L(1/3)$ algorithm for ideal class group and regulator computation in certain number fields,, Math. Comp., 83 (2014), 2005.  doi: 10.1090/S0025-5718-2014-02651-3.  Google Scholar

[3]

J.-F. Biasse and C. Fieker, New techniques for computing the ideal class group and a system of fundamental units in number fields,, preprint, ().   Google Scholar

[4]

I. Biehl, J. Buchmann, S. Hamdy and A. Meyer, A signature scheme based on the intractability of computing roots,, Des. Codes Crypt., 25 (2002), 223.  doi: 10.1023/A:1014927327846.  Google Scholar

[5]

G. Bisson, Endomorphism Rings in Cryptography, Ph.D thesis,, LORIA, (2011).   Google Scholar

[6]

J. Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields,, in Séminaire de Théorie des Nombres (ed. C. Goldstein), (1990), 27.   Google Scholar

[7]

J. Buchmann and S. Paulus, A one way function based on ideal arithmetic in number fields,, in CRYPTO '97: Proc. 17th Annual Int. Crypt. Conf. Adv. Crypt., (1997), 385.   Google Scholar

[8]

J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach,, Springer-Verlag, (2007).   Google Scholar

[9]

J. Buchmann and H. C. Williams, A key-exchange system based on real quadratic fields,, in CRYPTO '89, (1989), 335.  doi: 10.1007/0-387-34805-0_31.  Google Scholar

[10]

J. Cassels, An Introduction to the Geometry of Numbers,, Springer-Verlag, (1997).   Google Scholar

[11]

H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields,, in Number Theory Noordwijkerhout 1983, (1983), 33.  doi: 10.1007/BFb0099440.  Google Scholar

[12]

A. Enge, P. Gaudry and E. Thomé, An $L(1/3)$ Discrete Logarithm Algorithm for Low Degree Curves,, available online at , ().   Google Scholar

[13]

C. Gentry, A Fully Homomorphic Encryption Scheme, Ph.D thesis,, Stanford University, (2009).   Google Scholar

[14]

C. Gentry, Fully homomorphic encryption using ideal lattices,, in Proc. 41st Annual ACM Symp. Theory Comp., (2009), 169.  doi: 10.1145/1536414.1536440.  Google Scholar

[15]

D. Gordon, Discrete logarithms in $GF(p)$ using the number field sieve,, SIAM J. Discrete Math., 6 (1993), 124.  doi: 10.1137/0406010.  Google Scholar

[16]

J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm for computation of class groups,, J. Amer. Math. Soc., 2 (1989), 837.  doi: 10.1090/S0894-0347-1989-1002631-0.  Google Scholar

[17]

G. Hanrot and D. Stehlé, Improved analysis of Kannans shortest lattice vector algorithm,, in Adv. Crypt. - CRYPTO 2007 (ed. A. Menezes), (2007), 170.  doi: 10.1007/978-3-540-74143-5_10.  Google Scholar

[18]

M. Jacobson, Á. Pintér and P. Walsh, A computational approach for solving $y^2 = 1^k + 2^k + \cdots + x^k$,, Math. Comp., 72 (2003), 2099.  doi: 10.1090/S0025-5718-03-01465-0.  Google Scholar

[19]

M. Jacobson and H. C. Williams, Solving the Pell Equation,, Springer-Verlag, (2009).   Google Scholar

[20]

D. Jao and V. Soukharev, A subexponential algorithm for evaluating large degree isogenies,, in Algorithmic Number Theory (eds. G. Hanrot, (2010), 219.  doi: 10.1007/978-3-642-14518-6_19.  Google Scholar

[21]

A. Joux, R. Lercier, N. P. Smart and F. Vercauteren, The number field sieve in the medium prime case,, in Adv. Cryptology - CRYPTO 2006 ed. C. Dwork, (2006), 326.  doi: 10.1007/11818175_19.  Google Scholar

[22]

N. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy,, AMS, (1998).   Google Scholar

[23]

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The number field sieve,, in STOC '90: Proc 22nd Annual ACM Symp. Theory Computing, (1990), 564.  doi: 10.1145/100216.100295.  Google Scholar

[24]

J. E. Littlewood, On the class number of the corpus $P(\sqrtk)$,, Proc. London Math. Soc., 27 (1928), 358.  doi: 10.1112/plms/s2-27.1.358.  Google Scholar

[25]

D. Lubicz and D. Robert, Computing isogenies between abelian varieties,, Compositio Math., 148 (2012), 1483.  doi: 10.1112/S0010437X12000243.  Google Scholar

[26]

A. Meyer, S. Neis and T. Pfahler, First implementation of cryptographic protocols based on algebraic number fields,, in ACISP '01: Proc. 6th Australasian Conf. Inf. Sec. Privacy, (2001), 84.   Google Scholar

[27]

C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,, Theor. Comp. Sci., 53 (1987), 201.  doi: 10.1016/0304-3975(87)90064-8.  Google Scholar

[28]

E. J. Scourfield, On ideals free of large prime factors,, J. Théorie Nombres Bordeaux, 16 (2004), 733.  doi: 10.5802/jtnb.468.  Google Scholar

[29]

N. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes,, in Public Key Cryptography - PKC 2010 (eds. P. Nguyen and D. Pointcheval), (2010), 420.  doi: 10.1007/978-3-642-13013-7_25.  Google Scholar

[30]

U. Vollmer, Asymptotically fast discrete logarithms in quadratic number fields,, in Algorithmic Number Theory - ANTS-IV, (1838), 581.  doi: 10.1007/10722028_39.  Google Scholar

show all references

References:
[1]

L. Adleman and J. DeMarrais, A subexponential algorithm for discrete logarithms over all finite fields,, in Adv. Crypt. - CRYPTO '93 (ed. D. Stinson), (1994), 147.  doi: 10.1007/3-540-48329-2_13.  Google Scholar

[2]

J.-F. Biasse, An $L(1/3)$ algorithm for ideal class group and regulator computation in certain number fields,, Math. Comp., 83 (2014), 2005.  doi: 10.1090/S0025-5718-2014-02651-3.  Google Scholar

[3]

J.-F. Biasse and C. Fieker, New techniques for computing the ideal class group and a system of fundamental units in number fields,, preprint, ().   Google Scholar

[4]

I. Biehl, J. Buchmann, S. Hamdy and A. Meyer, A signature scheme based on the intractability of computing roots,, Des. Codes Crypt., 25 (2002), 223.  doi: 10.1023/A:1014927327846.  Google Scholar

[5]

G. Bisson, Endomorphism Rings in Cryptography, Ph.D thesis,, LORIA, (2011).   Google Scholar

[6]

J. Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields,, in Séminaire de Théorie des Nombres (ed. C. Goldstein), (1990), 27.   Google Scholar

[7]

J. Buchmann and S. Paulus, A one way function based on ideal arithmetic in number fields,, in CRYPTO '97: Proc. 17th Annual Int. Crypt. Conf. Adv. Crypt., (1997), 385.   Google Scholar

[8]

J. Buchmann and U. Vollmer, Binary Quadratic Forms: An Algorithmic Approach,, Springer-Verlag, (2007).   Google Scholar

[9]

J. Buchmann and H. C. Williams, A key-exchange system based on real quadratic fields,, in CRYPTO '89, (1989), 335.  doi: 10.1007/0-387-34805-0_31.  Google Scholar

[10]

J. Cassels, An Introduction to the Geometry of Numbers,, Springer-Verlag, (1997).   Google Scholar

[11]

H. Cohen and H. W. Lenstra, Heuristics on class groups of number fields,, in Number Theory Noordwijkerhout 1983, (1983), 33.  doi: 10.1007/BFb0099440.  Google Scholar

[12]

A. Enge, P. Gaudry and E. Thomé, An $L(1/3)$ Discrete Logarithm Algorithm for Low Degree Curves,, available online at , ().   Google Scholar

[13]

C. Gentry, A Fully Homomorphic Encryption Scheme, Ph.D thesis,, Stanford University, (2009).   Google Scholar

[14]

C. Gentry, Fully homomorphic encryption using ideal lattices,, in Proc. 41st Annual ACM Symp. Theory Comp., (2009), 169.  doi: 10.1145/1536414.1536440.  Google Scholar

[15]

D. Gordon, Discrete logarithms in $GF(p)$ using the number field sieve,, SIAM J. Discrete Math., 6 (1993), 124.  doi: 10.1137/0406010.  Google Scholar

[16]

J. L. Hafner and K. S. McCurley, A rigorous subexponential algorithm for computation of class groups,, J. Amer. Math. Soc., 2 (1989), 837.  doi: 10.1090/S0894-0347-1989-1002631-0.  Google Scholar

[17]

G. Hanrot and D. Stehlé, Improved analysis of Kannans shortest lattice vector algorithm,, in Adv. Crypt. - CRYPTO 2007 (ed. A. Menezes), (2007), 170.  doi: 10.1007/978-3-540-74143-5_10.  Google Scholar

[18]

M. Jacobson, Á. Pintér and P. Walsh, A computational approach for solving $y^2 = 1^k + 2^k + \cdots + x^k$,, Math. Comp., 72 (2003), 2099.  doi: 10.1090/S0025-5718-03-01465-0.  Google Scholar

[19]

M. Jacobson and H. C. Williams, Solving the Pell Equation,, Springer-Verlag, (2009).   Google Scholar

[20]

D. Jao and V. Soukharev, A subexponential algorithm for evaluating large degree isogenies,, in Algorithmic Number Theory (eds. G. Hanrot, (2010), 219.  doi: 10.1007/978-3-642-14518-6_19.  Google Scholar

[21]

A. Joux, R. Lercier, N. P. Smart and F. Vercauteren, The number field sieve in the medium prime case,, in Adv. Cryptology - CRYPTO 2006 ed. C. Dwork, (2006), 326.  doi: 10.1007/11818175_19.  Google Scholar

[22]

N. Katz and P. Sarnak, Random Matrices, Frobenius Eigenvalues and Monodromy,, AMS, (1998).   Google Scholar

[23]

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse and J. M. Pollard, The number field sieve,, in STOC '90: Proc 22nd Annual ACM Symp. Theory Computing, (1990), 564.  doi: 10.1145/100216.100295.  Google Scholar

[24]

J. E. Littlewood, On the class number of the corpus $P(\sqrtk)$,, Proc. London Math. Soc., 27 (1928), 358.  doi: 10.1112/plms/s2-27.1.358.  Google Scholar

[25]

D. Lubicz and D. Robert, Computing isogenies between abelian varieties,, Compositio Math., 148 (2012), 1483.  doi: 10.1112/S0010437X12000243.  Google Scholar

[26]

A. Meyer, S. Neis and T. Pfahler, First implementation of cryptographic protocols based on algebraic number fields,, in ACISP '01: Proc. 6th Australasian Conf. Inf. Sec. Privacy, (2001), 84.   Google Scholar

[27]

C. P. Schnorr, A hierarchy of polynomial time lattice basis reduction algorithms,, Theor. Comp. Sci., 53 (1987), 201.  doi: 10.1016/0304-3975(87)90064-8.  Google Scholar

[28]

E. J. Scourfield, On ideals free of large prime factors,, J. Théorie Nombres Bordeaux, 16 (2004), 733.  doi: 10.5802/jtnb.468.  Google Scholar

[29]

N. Smart and F. Vercauteren, Fully homomorphic encryption with relatively small key and ciphertext sizes,, in Public Key Cryptography - PKC 2010 (eds. P. Nguyen and D. Pointcheval), (2010), 420.  doi: 10.1007/978-3-642-13013-7_25.  Google Scholar

[30]

U. Vollmer, Asymptotically fast discrete logarithms in quadratic number fields,, in Algorithmic Number Theory - ANTS-IV, (1838), 581.  doi: 10.1007/10722028_39.  Google Scholar

[1]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[2]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[5]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[6]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[7]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[8]

Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011

[9]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[10]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[11]

Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513

[12]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[13]

Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265

[14]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[15]

Samir Adly, Oanh Chau, Mohamed Rochdi. Solvability of a class of thermal dynamical contact problems with subdifferential conditions. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 91-104. doi: 10.3934/naco.2012.2.91

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452

[17]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[18]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[19]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[20]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]