-
Previous Article
Curves in characteristic $2$ with non-trivial $2$-torsion
- AMC Home
- This Issue
-
Next Article
The geometry of some parameterizations and encodings
Smoothness testing of polynomials over finite fields
1. | Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 |
2. | Department of Computer Science, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada |
References:
[1] |
gf2x, a C/C++ software package containing routines for fast arithmetic in $GF(2)[x]$, (multiplication, (). Google Scholar |
[2] |
D. Bernstein, How to find smooth parts of integers,, submitted., (). Google Scholar |
[3] |
J.-F. Biasse and M. Jacobson, Practical improvements to class group and regulator computation of real quadratic fields,, in Algorithmic Number Theory (eds. G. Hanrot, (2010), 50.
doi: 10.1007/978-3-642-14518-6_8. |
[4] |
G. Bisson and A. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field,, J. Number Theory, 113 (2011), 815.
doi: 10.1016/j.jnt.2009.11.003. |
[5] |
D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two,, IEEE Trans. Inf. Theory, 30 (1984), 587.
doi: 10.1109/TIT.1984.1056941. |
[6] |
J. Detrey, P. Gaudry and M. Videau, Relation collection for the function field sieve,, in 21st IEEE Int. Symp. Computer Arith. (eds. A. Nannarelli, (2013), 201.
doi: 10.1109/ARITH.2013.28. |
[7] |
A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algorithms,, Acta Arith., 102 (2002), 83.
doi: 10.4064/aa102-1-6. |
[8] |
M. Jacobson, A. Menezes and A. Stein, Solving elliptic curve discrete logarithm problems using Weil descent,, J. Ramanujan Math. Soc., 16 (2001), 231.
|
[9] |
H. Lenstra, Factoring integers with elliptic curves,, Ann. Math., 126 (1987), 649.
doi: 10.2307/1971363. |
[10] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1986).
|
[11] |
A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,, in Proc. EUROCRYPT 84 Workshop Adv. Cryptology: Theory Appl. Crypt. Techn., (1985), 224.
doi: 10.1007/3-540-39757-4_20. |
[12] |
A. Schnhage and V. Strassen, Schnelle Multiplikation grosser Zahlen (in German),, Computing, 7 (1971), 281.
|
[13] |
V. Shoup, NTL: A library for doing number theory,, Software, (). Google Scholar |
[14] |
M. Velichka, M. Jacobson and A. Stein, Computing discrete logarithms in the jacobian of high-genus hyperelliptic curves over even characteristic finite fields,, Math. Comp., 83 (2014), 935.
doi: 10.1090/S0025-5718-2013-02748-2. |
[15] |
J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials,, Comp. Complexity, 2 (1992), 187.
doi: 10.1007/BF01272074. |
show all references
References:
[1] |
gf2x, a C/C++ software package containing routines for fast arithmetic in $GF(2)[x]$, (multiplication, (). Google Scholar |
[2] |
D. Bernstein, How to find smooth parts of integers,, submitted., (). Google Scholar |
[3] |
J.-F. Biasse and M. Jacobson, Practical improvements to class group and regulator computation of real quadratic fields,, in Algorithmic Number Theory (eds. G. Hanrot, (2010), 50.
doi: 10.1007/978-3-642-14518-6_8. |
[4] |
G. Bisson and A. Sutherland, Computing the endomorphism ring of an ordinary elliptic curve over a finite field,, J. Number Theory, 113 (2011), 815.
doi: 10.1016/j.jnt.2009.11.003. |
[5] |
D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two,, IEEE Trans. Inf. Theory, 30 (1984), 587.
doi: 10.1109/TIT.1984.1056941. |
[6] |
J. Detrey, P. Gaudry and M. Videau, Relation collection for the function field sieve,, in 21st IEEE Int. Symp. Computer Arith. (eds. A. Nannarelli, (2013), 201.
doi: 10.1109/ARITH.2013.28. |
[7] |
A. Enge and P. Gaudry, A general framework for subexponential discrete logarithm algorithms,, Acta Arith., 102 (2002), 83.
doi: 10.4064/aa102-1-6. |
[8] |
M. Jacobson, A. Menezes and A. Stein, Solving elliptic curve discrete logarithm problems using Weil descent,, J. Ramanujan Math. Soc., 16 (2001), 231.
|
[9] |
H. Lenstra, Factoring integers with elliptic curves,, Ann. Math., 126 (1987), 649.
doi: 10.2307/1971363. |
[10] |
R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1986).
|
[11] |
A. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance,, in Proc. EUROCRYPT 84 Workshop Adv. Cryptology: Theory Appl. Crypt. Techn., (1985), 224.
doi: 10.1007/3-540-39757-4_20. |
[12] |
A. Schnhage and V. Strassen, Schnelle Multiplikation grosser Zahlen (in German),, Computing, 7 (1971), 281.
|
[13] |
V. Shoup, NTL: A library for doing number theory,, Software, (). Google Scholar |
[14] |
M. Velichka, M. Jacobson and A. Stein, Computing discrete logarithms in the jacobian of high-genus hyperelliptic curves over even characteristic finite fields,, Math. Comp., 83 (2014), 935.
doi: 10.1090/S0025-5718-2013-02748-2. |
[15] |
J. von zur Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials,, Comp. Complexity, 2 (1992), 187.
doi: 10.1007/BF01272074. |
[1] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[2] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[3] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[4] |
Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012 |
[5] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[6] |
Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010 |
[7] |
Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004 |
[8] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[9] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[10] |
Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111 |
[11] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[12] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[13] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[14] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[15] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[16] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[17] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[18] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[19] |
Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029 |
[20] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]