November  2014, 8(4): 497-509. doi: 10.3934/amc.2014.8.497

On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$

1. 

Équipe GAATI, Université de la Polynésie Française, BP 6570, 98702 FAA'A, Tahiti, Polynésie Française, France

Received  January 2014 Revised  September 2014 Published  November 2014

Let $t$ be an integer $\ge 5$. The absolute irreducibility of the polynomial $\phi_t(x, y) = \frac{x^t + y^t + 1 + (x + y + 1)^t}{(x + y)(x + 1)(y + 1)}$ (over $\mathbb{F}_2$) plays an important role in the study of APN functions. If $t \equiv 5 \bmod{8}$, we give a criterion that ensures that $\phi_t(x, y)$ is absolutely irreducible. We prove that if $\phi_t(x, y)$ is not absolutely irreducible, then it is divisible by $\phi_{13}(x, y)$. We also exhibit an infinite family of integers $t$ such that $\phi_t(x, y)$ is not absolutely irreducible.
Citation: Eric Férard. On the irreducibility of the hyperplane sections of Fermat varieties in $\mathbb{P}^3$ in characteristic $2$. Advances in Mathematics of Communications, 2014, 8 (4) : 497-509. doi: 10.3934/amc.2014.8.497
References:
[1]

Y. Aubry, G. McGuire and F. Rodier, A few more functions that are not APN infinitely often,, in Finite Fields: Theory and Applications, (2010), 23.  doi: 10.1090/conm/518/10193.  Google Scholar

[2]

T. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F^n_2$,, IEEE Trans. Inf. Theory, 52 (2006), 4160.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[3]

A. W. Bluher, On existence of Budaghyan-Carlet APN hexanomials,, Finite Fields Appl., 24 (2013), 118.  doi: 10.1016/j.ffa.2013.06.003.  Google Scholar

[4]

C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of quadratic almost perfect nonlinear trinomials and multinomials,, Finite Fields Appl., 14 (2008), 703.  doi: 10.1016/j.ffa.2007.11.002.  Google Scholar

[5]

C. Bracken, C.H. Tan and Y. Tan, On a class of quadratic polynomials with no zeros and its application to APN functions,, Finite Fields Appl., 25 (2014), 26.  doi: 10.1016/j.ffa.2013.08.006.  Google Scholar

[6]

L. Budaghyan, C. Carlet, P. Felke and G. Leander, An infinite class of quadratic APN functions which are not equivalent to power mappings,, in Proc. IEEE Int. Symp. Inf. Theory, (2006), 2637.  doi: 10.1109/ISIT.2006.262131.  Google Scholar

[7]

E. Byrne and G. McGuire, On the non-existence of quadratic APN and crooked functions on finite fields,, in Proc. Workshop Coding Crypt., (2005), 316.   Google Scholar

[8]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Crypt., 15 (1998), 125.  doi: 10.1023/A:1008344232130.  Google Scholar

[9]

F. Caullery, A new large class of functions not APN infinitely often,, Des. Codes Crypt., 73 (2014), 601.  doi: 10.1007/s10623-014-9956-2.  Google Scholar

[10]

M. Delgado and H. Janwa, On the conjecture on APN functions,, preprint, ().   Google Scholar

[11]

J. F. Dillon, APN Polynomials: An update,, invited talk at 9th Int. Conf. Finite Fields Appl., (2009).   Google Scholar

[12]

Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping,, IEEE Trans. Inf. Theory, 52 (2006), 744.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[13]

E. Férard, R. Oyono and F. Rodier, Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents,, in Arithmetic, (2012), 27.  doi: 10.1090/conm/574/11423.  Google Scholar

[14]

E. Férard and F. Rodier, Non linéarité des fonctions booléennes données par des traces de polynômes de degré binaire 3 [Nonlinearity of Boolean functions given by traces of polynomials of binary degree 3],, in Algebraic Geometry and its Applications, (2008), 388.  doi: 10.1142/9789812793430_0021.  Google Scholar

[15]

E. Férard and F. Rodier, Non linéarité des fonctions booléennes données par des polynômes de degré binaire 3 définies sur $\mathbbF_{2^m}$ avec $m$ pair [Nonlinearity of Boolean functions given by polynomials of binary degree 3 defined on $\mathbbF_{2^m}$ with $m$ even],, in Arithmetic, (2010), 41.  doi: 10.1090/conm/521/10272.  Google Scholar

[16]

W. Fulton, Algebraic Curves,, Benjamin, (1969).   Google Scholar

[17]

B. Hassett, Introduction to Algebraic Geometry,, Cambridge Univ. Press, (2007).  doi: 10.1017/CBO9780511755224.  Google Scholar

[18]

F. Hernando and G. McGuire, Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions,, J. Algebra, 343 (2011), 78.  doi: 10.1016/j.jalgebra.2011.06.019.  Google Scholar

[19]

H. Janwa, G. McGuire and R. M. Wilson, Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2),, J. Algebra, 178 (1995), 665.  doi: 10.1006/jabr.1995.1372.  Google Scholar

[20]

H. Janwa and R. M. Wilson, Hyperplane sections of Fermat varieties in $P^3$ in char. 2 and some applications to cyclic codes,, in Applied Algebra, (1993), 180.  doi: 10.1007/3-540-56686-4_43.  Google Scholar

[21]

D. Jedlicka, APN monomials over $GF(2^n)$ for infinitely many $n$,, Finite Fields Appl., 13 (2007), 1006.  doi: 10.1016/j.ffa.2007.04.004.  Google Scholar

[22]

E. Leducq, Autour des Xodes de Reed-Muller Généralisés,, Ph.D thesis, (2011).   Google Scholar

[23]

E. Lucas, Théorie des fonctions numériques simplement périodiques,, Amer. J. Math., 1 (1878), 197.  doi: 10.2307/2369373.  Google Scholar

[24]

K. Nyberg, Differentially uniform mappings for cryptography,, in Adv. Crypt.- Eurocrypt '93, (1994), 55.  doi: 10.1007/3-540-48285-7_6.  Google Scholar

[25]

F. Rodier, Bornes sur le degré des polynômes presque parfaitement non-linéaires,, in Arithmetic, (2009), 169.  doi: 10.1090/conm/487/09531.  Google Scholar

[26]

F. Rodier, Functions of degree $4e$ that are not APN infinitely often,, Crypt. Commun., 3 (2011), 227.  doi: 10.1007/s12095-011-0050-6.  Google Scholar

[27]

The Sage Development Team, Sage Mathematics Software (Version 4.8),, , ().   Google Scholar

show all references

References:
[1]

Y. Aubry, G. McGuire and F. Rodier, A few more functions that are not APN infinitely often,, in Finite Fields: Theory and Applications, (2010), 23.  doi: 10.1090/conm/518/10193.  Google Scholar

[2]

T. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy, On almost perfect nonlinear functions over $F^n_2$,, IEEE Trans. Inf. Theory, 52 (2006), 4160.  doi: 10.1109/TIT.2006.880036.  Google Scholar

[3]

A. W. Bluher, On existence of Budaghyan-Carlet APN hexanomials,, Finite Fields Appl., 24 (2013), 118.  doi: 10.1016/j.ffa.2013.06.003.  Google Scholar

[4]

C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of quadratic almost perfect nonlinear trinomials and multinomials,, Finite Fields Appl., 14 (2008), 703.  doi: 10.1016/j.ffa.2007.11.002.  Google Scholar

[5]

C. Bracken, C.H. Tan and Y. Tan, On a class of quadratic polynomials with no zeros and its application to APN functions,, Finite Fields Appl., 25 (2014), 26.  doi: 10.1016/j.ffa.2013.08.006.  Google Scholar

[6]

L. Budaghyan, C. Carlet, P. Felke and G. Leander, An infinite class of quadratic APN functions which are not equivalent to power mappings,, in Proc. IEEE Int. Symp. Inf. Theory, (2006), 2637.  doi: 10.1109/ISIT.2006.262131.  Google Scholar

[7]

E. Byrne and G. McGuire, On the non-existence of quadratic APN and crooked functions on finite fields,, in Proc. Workshop Coding Crypt., (2005), 316.   Google Scholar

[8]

C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems,, Des. Codes Crypt., 15 (1998), 125.  doi: 10.1023/A:1008344232130.  Google Scholar

[9]

F. Caullery, A new large class of functions not APN infinitely often,, Des. Codes Crypt., 73 (2014), 601.  doi: 10.1007/s10623-014-9956-2.  Google Scholar

[10]

M. Delgado and H. Janwa, On the conjecture on APN functions,, preprint, ().   Google Scholar

[11]

J. F. Dillon, APN Polynomials: An update,, invited talk at 9th Int. Conf. Finite Fields Appl., (2009).   Google Scholar

[12]

Y. Edel, G. Kyureghyan and A. Pott, A new APN function which is not equivalent to a power mapping,, IEEE Trans. Inf. Theory, 52 (2006), 744.  doi: 10.1109/TIT.2005.862128.  Google Scholar

[13]

E. Férard, R. Oyono and F. Rodier, Some more functions that are not APN infinitely often. The case of Gold and Kasami exponents,, in Arithmetic, (2012), 27.  doi: 10.1090/conm/574/11423.  Google Scholar

[14]

E. Férard and F. Rodier, Non linéarité des fonctions booléennes données par des traces de polynômes de degré binaire 3 [Nonlinearity of Boolean functions given by traces of polynomials of binary degree 3],, in Algebraic Geometry and its Applications, (2008), 388.  doi: 10.1142/9789812793430_0021.  Google Scholar

[15]

E. Férard and F. Rodier, Non linéarité des fonctions booléennes données par des polynômes de degré binaire 3 définies sur $\mathbbF_{2^m}$ avec $m$ pair [Nonlinearity of Boolean functions given by polynomials of binary degree 3 defined on $\mathbbF_{2^m}$ with $m$ even],, in Arithmetic, (2010), 41.  doi: 10.1090/conm/521/10272.  Google Scholar

[16]

W. Fulton, Algebraic Curves,, Benjamin, (1969).   Google Scholar

[17]

B. Hassett, Introduction to Algebraic Geometry,, Cambridge Univ. Press, (2007).  doi: 10.1017/CBO9780511755224.  Google Scholar

[18]

F. Hernando and G. McGuire, Proof of a conjecture on the sequence of exceptional numbers, classifying cyclic codes and APN functions,, J. Algebra, 343 (2011), 78.  doi: 10.1016/j.jalgebra.2011.06.019.  Google Scholar

[19]

H. Janwa, G. McGuire and R. M. Wilson, Double-error-correcting cyclic codes and absolutely irreducible polynomials over GF(2),, J. Algebra, 178 (1995), 665.  doi: 10.1006/jabr.1995.1372.  Google Scholar

[20]

H. Janwa and R. M. Wilson, Hyperplane sections of Fermat varieties in $P^3$ in char. 2 and some applications to cyclic codes,, in Applied Algebra, (1993), 180.  doi: 10.1007/3-540-56686-4_43.  Google Scholar

[21]

D. Jedlicka, APN monomials over $GF(2^n)$ for infinitely many $n$,, Finite Fields Appl., 13 (2007), 1006.  doi: 10.1016/j.ffa.2007.04.004.  Google Scholar

[22]

E. Leducq, Autour des Xodes de Reed-Muller Généralisés,, Ph.D thesis, (2011).   Google Scholar

[23]

E. Lucas, Théorie des fonctions numériques simplement périodiques,, Amer. J. Math., 1 (1878), 197.  doi: 10.2307/2369373.  Google Scholar

[24]

K. Nyberg, Differentially uniform mappings for cryptography,, in Adv. Crypt.- Eurocrypt '93, (1994), 55.  doi: 10.1007/3-540-48285-7_6.  Google Scholar

[25]

F. Rodier, Bornes sur le degré des polynômes presque parfaitement non-linéaires,, in Arithmetic, (2009), 169.  doi: 10.1090/conm/487/09531.  Google Scholar

[26]

F. Rodier, Functions of degree $4e$ that are not APN infinitely often,, Crypt. Commun., 3 (2011), 227.  doi: 10.1007/s12095-011-0050-6.  Google Scholar

[27]

The Sage Development Team, Sage Mathematics Software (Version 4.8),, , ().   Google Scholar

[1]

Moises Delgado, Heeralal Janwa. Some new results on the conjecture on exceptional APN functions and absolutely irreducible polynomials: The gold case. Advances in Mathematics of Communications, 2017, 11 (2) : 389-396. doi: 10.3934/amc.2017033

[2]

Jean-François Biasse, Michael J. Jacobson, Jr.. Smoothness testing of polynomials over finite fields. Advances in Mathematics of Communications, 2014, 8 (4) : 459-477. doi: 10.3934/amc.2014.8.459

[3]

Carl Bracken, Zhengbang Zha. On the Fourier spectra of the infinite families of quadratic APN functions. Advances in Mathematics of Communications, 2009, 3 (3) : 219-226. doi: 10.3934/amc.2009.3.219

[4]

Amin Sakzad, Mohammad-Reza Sadeghi, Daniel Panario. Cycle structure of permutation functions over finite fields and their applications. Advances in Mathematics of Communications, 2012, 6 (3) : 347-361. doi: 10.3934/amc.2012.6.347

[5]

Thomas Gauthier, Gabriel Vigny. Distribution of postcritically finite polynomials Ⅱ: Speed of convergence. Journal of Modern Dynamics, 2017, 11: 57-98. doi: 10.3934/jmd.2017004

[6]

Florian Luca, Igor E. Shparlinski. On finite fields for pairing based cryptography. Advances in Mathematics of Communications, 2007, 1 (3) : 281-286. doi: 10.3934/amc.2007.1.281

[7]

Fakhrodin Hashemi, Saeed Ketabchi. Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019029

[8]

Stefania Fanali, Massimo Giulietti, Irene Platoni. On maximal curves over finite fields of small order. Advances in Mathematics of Communications, 2012, 6 (1) : 107-120. doi: 10.3934/amc.2012.6.107

[9]

Igor E. Shparlinski. On some dynamical systems in finite fields and residue rings. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 901-917. doi: 10.3934/dcds.2007.17.901

[10]

Robert Granger, Thorsten Kleinjung, Jens Zumbrägel. Indiscreet logarithms in finite fields of small characteristic. Advances in Mathematics of Communications, 2018, 12 (2) : 263-286. doi: 10.3934/amc.2018017

[11]

Shengtian Yang, Thomas Honold. Good random matrices over finite fields. Advances in Mathematics of Communications, 2012, 6 (2) : 203-227. doi: 10.3934/amc.2012.6.203

[12]

Francis N. Castro, Carlos Corrada-Bravo, Natalia Pacheco-Tallaj, Ivelisse Rubio. Explicit formulas for monomial involutions over finite fields. Advances in Mathematics of Communications, 2017, 11 (2) : 301-306. doi: 10.3934/amc.2017022

[13]

Susanne Pumplün. Finite nonassociative algebras obtained from skew polynomials and possible applications to (f, σ, δ)-codes. Advances in Mathematics of Communications, 2017, 11 (3) : 615-634. doi: 10.3934/amc.2017046

[14]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[15]

Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475-484. doi: 10.3934/amc.2013.7.475

[16]

Liren Lin, Hongwei Liu, Bocong Chen. Existence conditions for self-orthogonal negacyclic codes over finite fields. Advances in Mathematics of Communications, 2015, 9 (1) : 1-7. doi: 10.3934/amc.2015.9.1

[17]

Konstantinos Drakakis, Rod Gow, Scott Rickard. Parity properties of Costas arrays defined via finite fields. Advances in Mathematics of Communications, 2007, 1 (3) : 321-330. doi: 10.3934/amc.2007.1.321

[18]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[19]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[20]

David Grant, Mahesh K. Varanasi. Duality theory for space-time codes over finite fields. Advances in Mathematics of Communications, 2008, 2 (1) : 35-54. doi: 10.3934/amc.2008.2.35

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]