February  2014, 8(1): 53-66. doi: 10.3934/amc.2014.8.53

Unified combinatorial constructions of optimal optical orthogonal codes

1. 

Department of Mathematics, Zhejiang University, Hangzhou, Zhejiang 310027, China

2. 

Faculty of Education, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan

Received  May 2012 Revised  June 2013 Published  January 2014

We present unified constructions of optical orthogonal codes (OOCs) using other combinatorial objects such as cyclic linear codes and frequency hopping sequences. Some of the obtained OOCs are optimal or asymptotically optimal with respect to the Johnson bound. Also, we are able to show the existence of new optimal frequency hopping sequences (FHSs) with respect to the Singleton bound from our observation on a relation between OOCs and FHSs. The last construction is based on residue rings of polynomials over finite fields, and it yields a new large class of asymptotically optimal $(q-1,k,k-2)$-OOCs for any prime power $q$ with $\gcd{(q-1,k)}=1$. Some infinite families of optimal ones are included as a subclass.
Citation: Cuiling Fan, Koji Momihara. Unified combinatorial constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2014, 8 (1) : 53-66. doi: 10.3934/amc.2014.8.53
References:
[1]

T. L. Alderson and K. E. Mellinger, Constructions of optical orthogonal codes from finite geometry,, SIAM J. Discrete Math., 21 (2007), 785.  doi: 10.1137/050632257.  Google Scholar

[2]

T. L. Alderson and K. E. Mellinger, Optical orthogonal codes from Singer groups,, in Advances in Coding Theory and Cryptology, 3 (2007), 51.  doi: 10.1142/9789812772022_0004.  Google Scholar

[3]

T. L. Alderson and K. E. Mellinger, Classes of optical orthogonal codes from arcs in root subspaces,, Discrete Math., 308 (2008), 1093.  doi: 10.1016/j.disc.2007.03.063.  Google Scholar

[4]

T. L. Alderson and K. E. Mellinger, Families of optimal OOCs with $\lambda=2$,, IEEE Trans. Inform. Theory, 54 (2008), 3722.  doi: 10.1109/TIT.2008.926394.  Google Scholar

[5]

T. L. Alderson and K. E. Mellinger, Geometric constructions of optimal optical orthogonal codes,, Adv. Math. Commun., 2 (2008), 451.  doi: 10.3934/amc.2008.2.451.  Google Scholar

[6]

B. Berndt, R. Evans and K. S. Williams, Gauss and Jacobi Sums,, Wiley, (1997).   Google Scholar

[7]

C. M. Bird and A. D. Keedwell, Design and applications of optical orthogonal codes-a survey,, Bull. Inst. Combin. Appl., 11 (1994), 21.   Google Scholar

[8]

I. Bousrih, Families of rational functions over finite fields and constructions of optical orthogonal codes,, Afr. Diaspora J. Math., 3 (2005), 95.   Google Scholar

[9]

M. Buratti and A. Pasotti, Further progress on difference families with block size $4$ or $5$,, Des. Codes Cryptogr., 56 (2010), 1.  doi: 10.1007/s10623-009-9335-6.  Google Scholar

[10]

F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: design, analysis, and applications,, IEEE Trans. Inform. Theory, 35 (1989), 595.  doi: 10.1109/18.30982.  Google Scholar

[11]

H. Chung and P. V. Kumar, Optical orthogonal codes-new bounds and an optimal construction,, IEEE Trans. Inform. Theory, 36 (1990), 866.  doi: 10.1109/18.53748.  Google Scholar

[12]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of optimal frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inform. Theory, 55 (2009), 3297.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[13]

C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes,, IEEE Trans. Inform. Theory, 56 (2010), 3605.  doi: 10.1109/TIT.2010.2048504.  Google Scholar

[14]

R. Fuji-Hara and Y. Miao, Optical orthogonal codes: their bounds and new optimal constructions,, IEEE Trans. Inform. Theory, 46 (2000), 2396.  doi: 10.1109/18.887852.  Google Scholar

[15]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties,, IEEE Trans. Inform. Theory, 20 (1974), 90.   Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).   Google Scholar

[17]

F. J. MacWilliams and N. J. A. Sloan, The Theory of Error-Correcting Codes,, Twelfth editioin, (2006).   Google Scholar

[18]

S. V. Maric, O. Moreno and C. Corrada, Multimedia transmission in fiber-optic lans using optical cdma,, J. Lightwave Technol., 14 (1996), 2149.  doi: 10.1109/50.541202.  Google Scholar

[19]

S. Mashhadi and J. A. Salehi, Code-division multiple-access techniques in optical fiber networks-part iii: optical and logic gate receiver structure with generalized optical orthogonal codes,, IEEE Trans. Commun., 54 (2006), 1457.  doi: 10.1109/TCOMM.2006.878835.  Google Scholar

[20]

K. Momihara, New optimal optical orthogonal codes by restrictions to subgroups,, Finite Fields Appl., 17 (2010), 166.  doi: 10.1016/j.ffa.2010.11.001.  Google Scholar

[21]

O. Moreno, R. Omrani, P. V. Kumar and H.-F. Lu, A generalized Bose-Chowla family of optical orthogonal codes and distinct difference sets,, IEEE Trans. Inform. Theory, 53 (2007), 1907.  doi: 10.1109/TIT.2007.894658.  Google Scholar

[22]

O. Moreno, Z. Zhang, P. V. Kumar and A. Zinoviev, New constructions of optimal cyclically permutable constant weight codes,, IEEE Trans. Inform. Theory, 41 (1995), 448.  doi: 10.1109/18.370146.  Google Scholar

[23]

Q. A. Nguyen, L. Györfi and J. L. Massey, Constructions of binary constant-weight cyclic codes and cyclically permutable codes,, IEEE Trans. Inform. Theory, 38 (1992), 940.  doi: 10.1109/18.135636.  Google Scholar

[24]

R. Omrani, O. Moreno and P. V. Kumar, Improved Johnson bounds for optical orthogonal codes with $\lambda>1$ and some optimal constructions,, in Proc. Int. Symp. Inform. Theory, (2005), 259.   Google Scholar

[25]

D. Peng and P. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences,, IEEE Trans. Inform. Theory, 50 (2004), 2149.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[26]

H. Stichtenoth, Algebraic Function Fields and Codes,, Second edition, (2009).   Google Scholar

[27]

R. M. Wilson, Cyclotomy and difference families in elementary abelian groups,, J. Number Theory, 4 (1972), 17.  doi: 10.1016/0022-314X(72)90009-1.  Google Scholar

[28]

Z. Zhou, X. Tang, D. Peng and U. Parampall, New constructions for optimal sets of frequency-hopping sequences,, IEEE Trans. Inform. Theory, 57 (2011), 3831.  doi: 10.1109/TIT.2011.2137290.  Google Scholar

show all references

References:
[1]

T. L. Alderson and K. E. Mellinger, Constructions of optical orthogonal codes from finite geometry,, SIAM J. Discrete Math., 21 (2007), 785.  doi: 10.1137/050632257.  Google Scholar

[2]

T. L. Alderson and K. E. Mellinger, Optical orthogonal codes from Singer groups,, in Advances in Coding Theory and Cryptology, 3 (2007), 51.  doi: 10.1142/9789812772022_0004.  Google Scholar

[3]

T. L. Alderson and K. E. Mellinger, Classes of optical orthogonal codes from arcs in root subspaces,, Discrete Math., 308 (2008), 1093.  doi: 10.1016/j.disc.2007.03.063.  Google Scholar

[4]

T. L. Alderson and K. E. Mellinger, Families of optimal OOCs with $\lambda=2$,, IEEE Trans. Inform. Theory, 54 (2008), 3722.  doi: 10.1109/TIT.2008.926394.  Google Scholar

[5]

T. L. Alderson and K. E. Mellinger, Geometric constructions of optimal optical orthogonal codes,, Adv. Math. Commun., 2 (2008), 451.  doi: 10.3934/amc.2008.2.451.  Google Scholar

[6]

B. Berndt, R. Evans and K. S. Williams, Gauss and Jacobi Sums,, Wiley, (1997).   Google Scholar

[7]

C. M. Bird and A. D. Keedwell, Design and applications of optical orthogonal codes-a survey,, Bull. Inst. Combin. Appl., 11 (1994), 21.   Google Scholar

[8]

I. Bousrih, Families of rational functions over finite fields and constructions of optical orthogonal codes,, Afr. Diaspora J. Math., 3 (2005), 95.   Google Scholar

[9]

M. Buratti and A. Pasotti, Further progress on difference families with block size $4$ or $5$,, Des. Codes Cryptogr., 56 (2010), 1.  doi: 10.1007/s10623-009-9335-6.  Google Scholar

[10]

F. R. K. Chung, J. A. Salehi and V. K. Wei, Optical orthogonal codes: design, analysis, and applications,, IEEE Trans. Inform. Theory, 35 (1989), 595.  doi: 10.1109/18.30982.  Google Scholar

[11]

H. Chung and P. V. Kumar, Optical orthogonal codes-new bounds and an optimal construction,, IEEE Trans. Inform. Theory, 36 (1990), 866.  doi: 10.1109/18.53748.  Google Scholar

[12]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of optimal frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inform. Theory, 55 (2009), 3297.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[13]

C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes,, IEEE Trans. Inform. Theory, 56 (2010), 3605.  doi: 10.1109/TIT.2010.2048504.  Google Scholar

[14]

R. Fuji-Hara and Y. Miao, Optical orthogonal codes: their bounds and new optimal constructions,, IEEE Trans. Inform. Theory, 46 (2000), 2396.  doi: 10.1109/18.887852.  Google Scholar

[15]

A. Lempel and H. Greenberger, Families of sequences with optimal Hamming correlation properties,, IEEE Trans. Inform. Theory, 20 (1974), 90.   Google Scholar

[16]

R. Lidl and H. Niederreiter, Finite Fields,, Cambridge Univ. Press, (1997).   Google Scholar

[17]

F. J. MacWilliams and N. J. A. Sloan, The Theory of Error-Correcting Codes,, Twelfth editioin, (2006).   Google Scholar

[18]

S. V. Maric, O. Moreno and C. Corrada, Multimedia transmission in fiber-optic lans using optical cdma,, J. Lightwave Technol., 14 (1996), 2149.  doi: 10.1109/50.541202.  Google Scholar

[19]

S. Mashhadi and J. A. Salehi, Code-division multiple-access techniques in optical fiber networks-part iii: optical and logic gate receiver structure with generalized optical orthogonal codes,, IEEE Trans. Commun., 54 (2006), 1457.  doi: 10.1109/TCOMM.2006.878835.  Google Scholar

[20]

K. Momihara, New optimal optical orthogonal codes by restrictions to subgroups,, Finite Fields Appl., 17 (2010), 166.  doi: 10.1016/j.ffa.2010.11.001.  Google Scholar

[21]

O. Moreno, R. Omrani, P. V. Kumar and H.-F. Lu, A generalized Bose-Chowla family of optical orthogonal codes and distinct difference sets,, IEEE Trans. Inform. Theory, 53 (2007), 1907.  doi: 10.1109/TIT.2007.894658.  Google Scholar

[22]

O. Moreno, Z. Zhang, P. V. Kumar and A. Zinoviev, New constructions of optimal cyclically permutable constant weight codes,, IEEE Trans. Inform. Theory, 41 (1995), 448.  doi: 10.1109/18.370146.  Google Scholar

[23]

Q. A. Nguyen, L. Györfi and J. L. Massey, Constructions of binary constant-weight cyclic codes and cyclically permutable codes,, IEEE Trans. Inform. Theory, 38 (1992), 940.  doi: 10.1109/18.135636.  Google Scholar

[24]

R. Omrani, O. Moreno and P. V. Kumar, Improved Johnson bounds for optical orthogonal codes with $\lambda>1$ and some optimal constructions,, in Proc. Int. Symp. Inform. Theory, (2005), 259.   Google Scholar

[25]

D. Peng and P. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences,, IEEE Trans. Inform. Theory, 50 (2004), 2149.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[26]

H. Stichtenoth, Algebraic Function Fields and Codes,, Second edition, (2009).   Google Scholar

[27]

R. M. Wilson, Cyclotomy and difference families in elementary abelian groups,, J. Number Theory, 4 (1972), 17.  doi: 10.1016/0022-314X(72)90009-1.  Google Scholar

[28]

Z. Zhou, X. Tang, D. Peng and U. Parampall, New constructions for optimal sets of frequency-hopping sequences,, IEEE Trans. Inform. Theory, 57 (2011), 3831.  doi: 10.1109/TIT.2011.2137290.  Google Scholar

[1]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[2]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[3]

Jingjun Bao. New families of strictly optimal frequency hopping sequence sets. Advances in Mathematics of Communications, 2018, 12 (2) : 387-413. doi: 10.3934/amc.2018024

[4]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[5]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[6]

Serhii Dyshko. On extendability of additive code isometries. Advances in Mathematics of Communications, 2016, 10 (1) : 45-52. doi: 10.3934/amc.2016.10.45

[7]

Michael Kiermaier, Johannes Zwanzger. A $\mathbb Z$4-linear code of high minimum Lee distance derived from a hyperoval. Advances in Mathematics of Communications, 2011, 5 (2) : 275-286. doi: 10.3934/amc.2011.5.275

[8]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[9]

Selim Esedoḡlu, Fadil Santosa. Error estimates for a bar code reconstruction method. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1889-1902. doi: 10.3934/dcdsb.2012.17.1889

[10]

T. L. Alderson, K. E. Mellinger. Geometric constructions of optimal optical orthogonal codes. Advances in Mathematics of Communications, 2008, 2 (4) : 451-467. doi: 10.3934/amc.2008.2.451

[11]

M. Delgado Pineda, E. A. Galperin, P. Jiménez Guerra. MAPLE code of the cubic algorithm for multiobjective optimization with box constraints. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 407-424. doi: 10.3934/naco.2013.3.407

[12]

Andrew Klapper, Andrew Mertz. The two covering radius of the two error correcting BCH code. Advances in Mathematics of Communications, 2009, 3 (1) : 83-95. doi: 10.3934/amc.2009.3.83

[13]

Masaaki Harada, Takuji Nishimura. An extremal singly even self-dual code of length 88. Advances in Mathematics of Communications, 2007, 1 (2) : 261-267. doi: 10.3934/amc.2007.1.261

[14]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Information--bit error rate and false positives in an MDS code. Advances in Mathematics of Communications, 2015, 9 (2) : 149-168. doi: 10.3934/amc.2015.9.149

[15]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[16]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[17]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[18]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[19]

Leetika Kathuria, Madhu Raka. Existence of cyclic self-orthogonal codes: A note on a result of Vera Pless. Advances in Mathematics of Communications, 2012, 6 (4) : 499-503. doi: 10.3934/amc.2012.6.499

[20]

M. De Boeck, P. Vandendriessche. On the dual code of points and generators on the Hermitian variety $\mathcal{H}(2n+1,q^{2})$. Advances in Mathematics of Communications, 2014, 8 (3) : 281-296. doi: 10.3934/amc.2014.8.281

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]