\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Self-dual [62, 31, 12] and [64, 32, 12] codes with an automorphism of order 7

Abstract / Introduction Related Papers Cited by
  • This paper studies and classifies all binary self-dual $[62, 31, 12]$ and $[64, 32, 12]$ codes having an automorphism of order 7 with 8 cycles. This classification is done by applying a method for constructing binary self-dual codes with an automorphism of odd prime order $p$. There are exactly 8 inequivalent binary self-dual $[62, 31, 12]$ codes with an automorphism of type $7-(8,6)$. As for binary $[64,32,12]$ self-dual codes with an automorphism of type $7-(8,8)$ there are 44465 doubly-even and 557 singly-even such codes. Some of the constructed singly-even codes for both lengths have weight enumerators for which the existence was not known before.
    Mathematics Subject Classification: Primary: 11T71; Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Bouyukliev, About the code equivalence, in Advances in Coding Theory and Cryptography, World Scientific Publishing, 2007.doi: 10.1142/9789812772022_0009.

    [2]

    S. Bouyuklieva, N. Yankov and J.-L. Kim, Classification of binary self-dual [48, 24, 10] codes with an automorphism of odd prime order, Finite Fields Appl., 18 (2012), 1104-1113.doi: 10.1016/j.ffa.2012.08.002.

    [3]

    S. Bouyuklieva, N. Yankov and R. Russeva, Classification of the binary self-dual codes having an automorphism of order 3, Finite Fields Appl., 13 (2007), 605-615.doi: 10.1016/j.ffa.2006.01.001.

    [4]

    S. Bouyuklieva, N. Yankov and R. Russeva, On the classication of binary self-dual [44, 22, 8] codes with an automorphism of order 3 or 7, Int. J. Inform. Coding Theory, 2 (2011), 21-37.doi: 10.1504/IJICOT.2011.044676.

    [5]

    N. Chigira, M. Harada and M. Kitazume, Extremal self-dual codes of length 64 through neighbors and covering radii, Des. Codes Crypt., 42 (2007), 93-101.doi: 10.1007/s10623-006-9018-5.

    [6]

    J. H. Conway and N. J. A. Sloane, A new upper bound on the minimal distance of self-dual codes, IEEE Trans. Inform. Theory, 36 (1990), 1319-1333.doi: 10.1109/18.59931.

    [7]

    W. C. Huffman, Automorphisms of codes with application to extremal doubly-even codes of length 48, IEEE Trans. Inform. Theory, 28 (1982), 511-521.doi: 10.1109/TIT.1982.1056499.

    [8]

    W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl., 11 (2005), 451-490.doi: 10.1016/j.ffa.2005.05.012.

    [9]

    W. C. Huffman and V. Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003.

    [10]

    V. I. Iorgov, Doubly even extremal codes of length 64, Probl. Inform. Transm., 22 (1986), 277-284.

    [11]

    S. Karadeniz and B. Yildiz, Double-circulant and bordered-double-circulant constructions for self-dual codes over $R_2$, Adv. Math. Commun., 6 (2012), 193-202.doi: 10.3934/amc.2012.6.193.

    [12]

    G. Pasquier, A binary extremal doubly even self-dual code (64,32,12) obtained from an extended Reed-Solomon code over $F_{16}$, IEEE Trans. Inform. Theory, 27 (1981), 807-808.doi: 10.1109/TIT.1981.1056421.

    [13]

    R. Russeva and N. Yankov, On Binary self-dual codes of lengths 60, 62, 64 and 66 having an automorphism of order 9, Des. Codes Crypt., 45 (2007), 335-346.doi: 10.1007/s10623-007-9127-9.

    [14]

    N. Yankov, On binary self-dual codes of length 62 with an automorphism of order 7, Math. Educ. Math., 40 (2011), 223-228.

    [15]

    N. Yankov and R. Russeva, Binary self-dual codes of lengths 52 to 60 with an automorphism of order 7 or 13, IEEE Trans. Inform. Theory, 56 (2011), 7498-7506.doi: 10.1109/TIT.2011.2155619.

    [16]

    V. Yorgov, Binary self-dual codes with an automorphism of odd order (in Russian), Probl. Inform. Transm., 4 (1983), 13-24.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(117) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return