February  2015, 9(1): 105-115. doi: 10.3934/amc.2015.9.105

Derived and residual subspace designs

1. 

Mathematisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

2. 

Institut für Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany

Received  May 2014 Revised  October 2014 Published  February 2015

A generalization of forming derived and residual designs from $t$-designs to subspace designs is proposed. A $q$-analog of a theorem by Tran Van Trung, van Leijenhorst and Driessen is proven, stating that if for some (not necessarily realizable) parameter set the derived and residual parameter set are realizable, the same is true for the reduced parameter set.
    As a result, we get the existence of several previously unknown subspace designs. Some consequences are derived for the existence of large sets of subspace designs. Furthermore, it is shown that there is no $q$-analog of the large Witt design.
Citation: Michael Kiermaier, Reinhard Laue. Derived and residual subspace designs. Advances in Mathematics of Communications, 2015, 9 (1) : 105-115. doi: 10.3934/amc.2015.9.105
References:
[1]

S. Ajoodani-Namini and G. B. Khosrovashahi, More on halving the complete designs,, Discrete Math., 135 (1994), 29.  doi: 10.1016/0012-365X(93)E0096-M.  Google Scholar

[2]

M. Braun, Some new designs over finite fields,, Bayreuther Math. Schr., 74 (2005), 58.   Google Scholar

[3]

M. Braun, T. Etzion, P. R. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems,, preprint, ().   Google Scholar

[4]

M. Braun, A. Kerber and R. Laue, Systematic construction of $q$-analogs of designs,, Des. Codes Cryptogr., 34 (2005), 55.  doi: 10.1007/s10623-003-4194-z.  Google Scholar

[5]

M. Braun, A. Kohnert, P. R. Östergård and A. Wassermann, Large sets of $t$-designs over finite fields,, J. Combin. Theory Ser. A, 124 (2014), 195.  doi: 10.1016/j.jcta.2014.01.008.  Google Scholar

[6]

S. Braun, Algorithmen zur computerunterstützten Berechnung von $q$-Analoga kombinatorischer Designs,, diploma thesis, (2009).   Google Scholar

[7]

S. Braun, Construction of $q$-analogs of combinatorial designs,, presentation at the conference Algebraic Combinatorics and Applications (ALCOMA10), (2010).   Google Scholar

[8]

P. J. Cameron, Generalization of Fisher's inequality to fields with more than one element,, in Proc. British Combinat. Conf. 1973, (1973), 9.  doi: 10.1017/CBO9780511662072.003.  Google Scholar

[9]

H. Cohn, Projective geometry over $\mathbb F_1$ and the Gaussian binomial coefficients,, Amer. Math. Monthly, 111 (2004), 487.  doi: 10.2307/4145067.  Google Scholar

[10]

L. M. H. E. Driessen, $t$-designs, $t \ge 3$,, technical report, (1978).   Google Scholar

[11]

A. Fazeli, S. Lovett and A. Vardy, Nontrivial $t$-designs over finite fields exist for all $t$,, preprint, ().   Google Scholar

[12]

J. Goldman and G.-C. Rota, On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions,, Stud. Appl. Math., 49 (1970), 239.   Google Scholar

[13]

T. Itoh, A new family of $2$-designs over $GF(q)$ admitting $SL_m(q^l)$,, Geom. Dedicata, 69 (1998), 261.  doi: 10.1023/A:1005057610394.  Google Scholar

[14]

M. Kiermaier and M. O. Pavčević, Intersection numbers for subspace designs,, J. Combin. Des., ().  doi: 10.1002/jcd.21403.  Google Scholar

[15]

D. C. van Leijenhorst, Orbits on the projective line,, J. Combin. Theory Ser. A, 31 (1981), 146.  doi: 10.1016/0097-3165(81)90011-X.  Google Scholar

[16]

M. Miyakawa, A. Munemasa and S. Yoshiara, On a class of small $2$-designs over GF$(q)$,, J. Combin. Des., 3 (1995), 61.  doi: 10.1002/jcd.3180030108.  Google Scholar

[17]

M. Schwartz and T. Etzion, Codes and anticodes in the Grassman graph,, J. Combin. Theory Ser. A, 97 (2002), 27.  doi: 10.1006/jcta.2001.3188.  Google Scholar

[18]

H. Suzuki, Five days introduction to the theory of designs,, 1989, ().   Google Scholar

[19]

H. Suzuki, On the inequalities of $t$-designs over a finite field,, European J. Combin., 11 (1990), 601.  doi: 10.1016/S0195-6698(13)80045-5.  Google Scholar

[20]

H. Suzuki, $2$-designs over $GF(2^m)$,, Graphs Combin., 6 (1990), 293.  doi: 10.1007/BF01787580.  Google Scholar

[21]

H. Suzuki, $2$-designs over $GF(q)$,, Graphs Combin., 8 (1992), 381.  doi: 10.1007/BF02351594.  Google Scholar

[22]

L. Teirlinck, Non-trivial $t$-designs without repeated blocks exist for all $t$,, Discrete Math., 65 (1987), 301.  doi: 10.1016/0012-365X(87)90061-6.  Google Scholar

[23]

S. Thomas, Designs over finite fields,, Geom. Dedicata, 24 (1987), 237.  doi: 10.1007/BF00150939.  Google Scholar

[24]

J. Tits, Sur les analogues algébriques des groupes semi-simples complexes,, in Colloque d'Algébre Supérieure, (1957), 261.   Google Scholar

[25]

Tran Van Trung, On the construction of $t$-designs and the existence of some new infinite families of simple $5$-designs,, Arch. Math. (Basel), 47 (1986), 187.  doi: 10.1007/BF01193690.  Google Scholar

show all references

References:
[1]

S. Ajoodani-Namini and G. B. Khosrovashahi, More on halving the complete designs,, Discrete Math., 135 (1994), 29.  doi: 10.1016/0012-365X(93)E0096-M.  Google Scholar

[2]

M. Braun, Some new designs over finite fields,, Bayreuther Math. Schr., 74 (2005), 58.   Google Scholar

[3]

M. Braun, T. Etzion, P. R. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems,, preprint, ().   Google Scholar

[4]

M. Braun, A. Kerber and R. Laue, Systematic construction of $q$-analogs of designs,, Des. Codes Cryptogr., 34 (2005), 55.  doi: 10.1007/s10623-003-4194-z.  Google Scholar

[5]

M. Braun, A. Kohnert, P. R. Östergård and A. Wassermann, Large sets of $t$-designs over finite fields,, J. Combin. Theory Ser. A, 124 (2014), 195.  doi: 10.1016/j.jcta.2014.01.008.  Google Scholar

[6]

S. Braun, Algorithmen zur computerunterstützten Berechnung von $q$-Analoga kombinatorischer Designs,, diploma thesis, (2009).   Google Scholar

[7]

S. Braun, Construction of $q$-analogs of combinatorial designs,, presentation at the conference Algebraic Combinatorics and Applications (ALCOMA10), (2010).   Google Scholar

[8]

P. J. Cameron, Generalization of Fisher's inequality to fields with more than one element,, in Proc. British Combinat. Conf. 1973, (1973), 9.  doi: 10.1017/CBO9780511662072.003.  Google Scholar

[9]

H. Cohn, Projective geometry over $\mathbb F_1$ and the Gaussian binomial coefficients,, Amer. Math. Monthly, 111 (2004), 487.  doi: 10.2307/4145067.  Google Scholar

[10]

L. M. H. E. Driessen, $t$-designs, $t \ge 3$,, technical report, (1978).   Google Scholar

[11]

A. Fazeli, S. Lovett and A. Vardy, Nontrivial $t$-designs over finite fields exist for all $t$,, preprint, ().   Google Scholar

[12]

J. Goldman and G.-C. Rota, On the foundations of combinatorial theory. IV. Finite vector spaces and Eulerian generating functions,, Stud. Appl. Math., 49 (1970), 239.   Google Scholar

[13]

T. Itoh, A new family of $2$-designs over $GF(q)$ admitting $SL_m(q^l)$,, Geom. Dedicata, 69 (1998), 261.  doi: 10.1023/A:1005057610394.  Google Scholar

[14]

M. Kiermaier and M. O. Pavčević, Intersection numbers for subspace designs,, J. Combin. Des., ().  doi: 10.1002/jcd.21403.  Google Scholar

[15]

D. C. van Leijenhorst, Orbits on the projective line,, J. Combin. Theory Ser. A, 31 (1981), 146.  doi: 10.1016/0097-3165(81)90011-X.  Google Scholar

[16]

M. Miyakawa, A. Munemasa and S. Yoshiara, On a class of small $2$-designs over GF$(q)$,, J. Combin. Des., 3 (1995), 61.  doi: 10.1002/jcd.3180030108.  Google Scholar

[17]

M. Schwartz and T. Etzion, Codes and anticodes in the Grassman graph,, J. Combin. Theory Ser. A, 97 (2002), 27.  doi: 10.1006/jcta.2001.3188.  Google Scholar

[18]

H. Suzuki, Five days introduction to the theory of designs,, 1989, ().   Google Scholar

[19]

H. Suzuki, On the inequalities of $t$-designs over a finite field,, European J. Combin., 11 (1990), 601.  doi: 10.1016/S0195-6698(13)80045-5.  Google Scholar

[20]

H. Suzuki, $2$-designs over $GF(2^m)$,, Graphs Combin., 6 (1990), 293.  doi: 10.1007/BF01787580.  Google Scholar

[21]

H. Suzuki, $2$-designs over $GF(q)$,, Graphs Combin., 8 (1992), 381.  doi: 10.1007/BF02351594.  Google Scholar

[22]

L. Teirlinck, Non-trivial $t$-designs without repeated blocks exist for all $t$,, Discrete Math., 65 (1987), 301.  doi: 10.1016/0012-365X(87)90061-6.  Google Scholar

[23]

S. Thomas, Designs over finite fields,, Geom. Dedicata, 24 (1987), 237.  doi: 10.1007/BF00150939.  Google Scholar

[24]

J. Tits, Sur les analogues algébriques des groupes semi-simples complexes,, in Colloque d'Algébre Supérieure, (1957), 261.   Google Scholar

[25]

Tran Van Trung, On the construction of $t$-designs and the existence of some new infinite families of simple $5$-designs,, Arch. Math. (Basel), 47 (1986), 187.  doi: 10.1007/BF01193690.  Google Scholar

[1]

Sabyasachi Dey, Tapabrata Roy, Santanu Sarkar. Revisiting design principles of Salsa and ChaCha. Advances in Mathematics of Communications, 2019, 13 (4) : 689-704. doi: 10.3934/amc.2019041

[2]

Ji-Woong Jang, Young-Sik Kim, Sang-Hyo Kim. New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set. Advances in Mathematics of Communications, 2009, 3 (2) : 115-124. doi: 10.3934/amc.2009.3.115

[3]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[4]

Monique Chyba, Thomas Haberkorn, Ryan N. Smith, George Wilkens. A geometric analysis of trajectory design for underwater vehicles. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 233-262. doi: 10.3934/dcdsb.2009.11.233

[5]

Magdi S. Mahmoud, Mohammed M. Hussain. Control design of linear systems with saturating actuators: A survey. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 413-435. doi: 10.3934/naco.2012.2.413

[6]

H. T. Banks, R. A. Everett, Neha Murad, R. D. White, J. E. Banks, Bodil N. Cass, Jay A. Rosenheim. Optimal design for dynamical modeling of pest populations. Mathematical Biosciences & Engineering, 2018, 15 (4) : 993-1010. doi: 10.3934/mbe.2018044

[7]

Hai Huyen Dam, Kok Lay Teo. Variable fractional delay filter design with discrete coefficients. Journal of Industrial & Management Optimization, 2016, 12 (3) : 819-831. doi: 10.3934/jimo.2016.12.819

[8]

Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181

[9]

K.F.C. Yiu, K.L. Mak, K. L. Teo. Airfoil design via optimal control theory. Journal of Industrial & Management Optimization, 2005, 1 (1) : 133-148. doi: 10.3934/jimo.2005.1.133

[10]

Boris P. Belinskiy. Optimal design of an optical length of a rod with the given mass. Conference Publications, 2007, 2007 (Special) : 85-91. doi: 10.3934/proc.2007.2007.85

[11]

Xiao Lan Zhu, Zhi Guo Feng, Jian Wen Peng. Robust design of sensor fusion problem in discrete time. Journal of Industrial & Management Optimization, 2017, 13 (2) : 825-834. doi: 10.3934/jimo.2016048

[12]

Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223

[13]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[14]

Dandan Hu, Zhi-Wei Liu. Location and capacity design of congested intermediate facilities in networks. Journal of Industrial & Management Optimization, 2016, 12 (2) : 449-470. doi: 10.3934/jimo.2016.12.449

[15]

Gaidi Li, Jiating Shao, Dachuan Xu, Wen-Qing Xu. The warehouse-retailer network design game. Journal of Industrial & Management Optimization, 2015, 11 (1) : 291-305. doi: 10.3934/jimo.2015.11.291

[16]

Ernesto Aranda, Pablo Pedregal. Constrained envelope for a general class of design problems. Conference Publications, 2003, 2003 (Special) : 30-41. doi: 10.3934/proc.2003.2003.30

[17]

Ruwu Xiao, Geng Li, Yuping Zhao. On the design of full duplex wireless system with chaotic sequences. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 783-793. doi: 10.3934/dcdss.2019052

[18]

Wei Xu, Liying Yu, Gui-Hua Lin, Zhi Guo Feng. Optimal switching signal design with a cost on switching action. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-19. doi: 10.3934/jimo.2019068

[19]

Shuhua Zhang, Zhuo Yang, Song Wang. Design of green bonds by double-barrier options. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020110

[20]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]