Citation: |
[1] |
R. Beivide, E. Herrada, J. L. Balcázar and A. Arruabarrena, Optimal distance networks of low degree for parallel computers, IEEE Trans. Comput., 40 (1991), 1109-1124.doi: 10.1109/12.93744. |
[2] |
Y. Ben-Haim, S. Gravier, A. Lobstein and J. Moncel, Adaptive identification in graphs, J. Comb. Theory Ser. A, 115 (2008), 1114-1126.doi: 10.1016/j.jcta.2007.12.009. |
[3] |
Y. Ben-Haim, S. Gravier, A. Lobstein and J. Moncel, Adaptive identification in Torii in the King lattice, Electr. J. Combin., 18 (2011), #P116. |
[4] |
Y. Ben-Haim and S. Litsyn, Exact minimum density of codes identifying vertices in the square grid, SIAM J. Discrete Math., 19 (2005), 69-82.doi: 10.1137/S0895480104444089. |
[5] |
J.-C. Bermond, O. Favaron and M. Maheo, Hamiltonian decomposition of Cayley graphs of degree 4, J. Comb. Theory Ser. B, 46 (1989), 142-153.doi: 10.1016/0095-8956(89)90040-3. |
[6] |
C. Camarero and C. Martíez and R. Beivide, Identifying codes over L-graphs, in 3th Int. Castle Meeting Coding Theory Appl., Barcelona, 2011. |
[7] |
I. Charon, I. Honkala, O. Hudry and A. Lobstein, General bounds for identifying codes in some infinite regular graphs, Electr. J. Combin., 8 (2001), #R39. |
[8] |
I. Charon, O. Hudry and A. Lobstein, Identifying codes with small radius in some infinite regular graphs, Electr. J. Combin., 9 (2002), #R11. |
[9] |
M. A. Fiol, On congruence in $\mathbb Z^n$ and the dimension of a multidimensional circulant, Discrete Math., 141 (1995), 1-3.doi: 10.1016/0012-365X(94)00361-L. |
[10] |
M. A. Fiol, J. L. Yebra, I. Alegre and M. Valero, Discrete optimization problem in local networks and data alignment, IEEE Trans. Comput., 36 (1987), 702-713.doi: 10.1109/TC.1987.1676963. |
[11] |
J. H. Jordan and C. J. Potratz, Complete residue systems in the Gaussian integers, Math. Magazine, 38 (1965), 1-12. |
[12] |
I. Honkala and A. Lobstein, On the density of identifying codes in the square lattice, J. Comb. Theory Ser. B, 85 (2002), 297-306.doi: 10.1006/jctb.2001.2106. |
[13] |
M. G. Karpovsky, K. Chakrabarty and L. B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inf. Theory, 44 (1998), 599-611.doi: 10.1109/18.661507. |
[14] |
A. Lobstein, Watching systems, identifying, locating-dominating and discriminating codes in graphs, available at http://www.infres.enst.fr/~lobstein/debutBIBidetlocdom.pdf |
[15] |
M. Malek, A comparison connection assignment for diagnosis of multiprocessor systems, in Proc. 7th Annual Symp. Comput. Arch., ACM, New York, 1980, 31-36.doi: 10.1145/800053.801906. |
[16] |
C. Martínez, R. Beivide, E. Stafford, M. Moreto and E. M. Gabidulin, Modeling toroidal networks with the Gaussian integers, IEEE Trans. Comput., 57 (2008), 1046-1056.doi: 10.1109/TC.2008.57. |
[17] |
C. Martínez, C. Camarero and R. Beivide, Perfect graph codes over two dimensional lattices, in 2010 IEEE Int. Symp. Inform. Theory, 2010, 1047-1051.doi: 10.1109/ISIT.2010.5513724. |
[18] |
F. P. Preparata, G. Metze and R. T. Chien, On the connection assignment problem of diagnosable systems, IEEE Trans. Electr. Comput., EC-16 (1967), 848-854.doi: 10.1109/PGEC.1967.264748. |
[19] |
C. H. Sequin, Doubly twisted torus networks for VLSI processor arrays, in Proc. 8th Annual Symp. Comput. Arch., IEEE Comput. Soc. Press, 1981, 471-480. |
[20] |
C. K. Wong and D. Coppersmith, A combinatorial problem related to multimodule memory organizations, J. ACM, 21 (1974), 392-402.doi: 10.1145/321832.321838. |
[21] |
J. Zerovnik, Perfect codes in direct product of cycles - a complete characterization, Adv. Appl. Math., 41 (2008), 197-205.doi: 10.1016/j.aam.2007.04.006. |