-
Previous Article
Cyclic orbit codes and stabilizer subfields
- AMC Home
- This Issue
-
Next Article
Information--bit error rate and false positives in an MDS code
Close values of shifted modular inversions and the decisional modular inversion hidden number problem
1. | Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia |
References:
[1] |
A. Akavia, Solving hidden number problem with one bit oracle and advice, in Adv. Crypt. - CRYPTO 2009, Springer-Verlag, Berlin, 2010, 337-354.
doi: 10.1007/978-3-642-03356-8_20. |
[2] |
D. Boneh, S. Halevi and N. A. Howgrave-Graham, The modular inversion hidden number problem, in Adv. Crypt. - ASIACRYPT 2001, Springer-Verlag, Berlin, 2001, 36-51.
doi: 10.1007/3-540-45682-1_3. |
[3] |
D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes, in Adv. Crypt. - CRYPTO '96, Springer-Verlag, Berlin, 1996, 129-142.
doi: 10.1007/3-540-68697-5_11. |
[4] |
D. Boneh and R. Venkatesan, Rounding in lattices and its cryptographic applications, in Proc. 8th Annual ACM-SIAM Symp. Discr. Algorithms, SIAM, 1997, 675-681. |
[5] |
M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, Points on curves in small boxes and applications, Michigan Math. J., 63 (2014), 503-534.
doi: 10.1307/mmj/1409932631. |
[6] |
J. Cilleruelo and M. Z. Garaev, Concentration of points on two and three dimensional modular hyperbolas and applications, Geom. Funct. Anal., 21 (2011), 892-904.
doi: 10.1007/s00039-011-0127-6. |
[7] |
J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, On the concentration of points of polynomial maps and applications, Math. Zeit., 272 (2012), 825-837.
doi: 10.1007/s00209-011-0959-7. |
[8] |
J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, Isomorphism classes of elliptic curves over a finite field in some thin families, Math. Res. Letters, 19 (2012), 335-343.
doi: 10.4310/MRL.2012.v19.n2.a6. |
[9] |
A. Dubickas, M. Sha and I. E. Shparlinski, Explicit form of Cassels' $p$-adic embedding theorem for number fields, Canad. J. Math., to appear. |
[10] |
O. Garcia-Morchon, D. Gómez-Pérez, J. Gutierrez, R. Rietman, B. Schoenmakers and L. Tolhuizen, HIMMO: A lightweight collusion-resistant key predistribution scheme, Cryptology ePrint Archive: Report 2014/698, available at http://eprint.iacr.org/2014/698 |
[11] |
O. Garcia-Morchon, D. Gómez-Pérez, J. Gutierrez, R. Rietman and L. Tolhuizen, The MMO problem, in Proc. 39th Int. Symp. Symbol. Algebr. Comput. - ISSAC'14, ACM, 2014, 186-193.
doi: 10.1145/2608628.2608643. |
[12] |
O. Garcia-Morchon, R. Rietman, I. E. Shparlinski and L. Tolhuizen, Interpolation and approximation of polynomials in finite fields over a short interval from noisy values, Experim. Math., 23 (2014), 241-260.
doi: 10.1080/10586458.2014.890918. |
[13] |
A. Granville, I. E. Shparlinski and A. Zaharescu, On the distribution of rational functions along a curve over $\mathbbF_p$ and residue races, J. Number Theory, 112 (2005), 216-237.
doi: 10.1016/j.jnt.2005.02.002. |
[14] |
S. Ling, I. E. Shparlinski, R. Steinfeld and H. Wang, On the modular inversion hidden number problem, J. Symb. Comp., 47 (2012), 358-367.
doi: 10.1016/j.jsc.2011.09.002. |
[15] |
M. Nair and G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math., 180 (1998), 119-144.
doi: 10.1007/BF02392880. |
[16] |
P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313 (1980), 161-170.
doi: 10.1515/crll.1980.313.161. |
[17] |
I. E. Shparlinski, Playing "Hide-and-Seek'' with numbers: The hidden number problem, lattices and exponential sums, Proc. Symp. Appl. Math., Amer. Math. Soc., 62 (2005), 153-177.
doi: 10.1090/psapm/062/2211876. |
[18] |
I. E. Shparlinski, Modular hyperbolas, Jap. J. Math., 7 (2012), 235-294.
doi: 10.1007/s11537-012-1140-8. |
[19] |
M. Vâjâitu and A. Zaharescu, Distribution of values of rational maps on the $\mathbbF_p$-points on an affine curve, Monatsh. Math., 136 (2002), 81-86.
doi: 10.1007/s006050200035. |
show all references
References:
[1] |
A. Akavia, Solving hidden number problem with one bit oracle and advice, in Adv. Crypt. - CRYPTO 2009, Springer-Verlag, Berlin, 2010, 337-354.
doi: 10.1007/978-3-642-03356-8_20. |
[2] |
D. Boneh, S. Halevi and N. A. Howgrave-Graham, The modular inversion hidden number problem, in Adv. Crypt. - ASIACRYPT 2001, Springer-Verlag, Berlin, 2001, 36-51.
doi: 10.1007/3-540-45682-1_3. |
[3] |
D. Boneh and R. Venkatesan, Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes, in Adv. Crypt. - CRYPTO '96, Springer-Verlag, Berlin, 1996, 129-142.
doi: 10.1007/3-540-68697-5_11. |
[4] |
D. Boneh and R. Venkatesan, Rounding in lattices and its cryptographic applications, in Proc. 8th Annual ACM-SIAM Symp. Discr. Algorithms, SIAM, 1997, 675-681. |
[5] |
M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, Points on curves in small boxes and applications, Michigan Math. J., 63 (2014), 503-534.
doi: 10.1307/mmj/1409932631. |
[6] |
J. Cilleruelo and M. Z. Garaev, Concentration of points on two and three dimensional modular hyperbolas and applications, Geom. Funct. Anal., 21 (2011), 892-904.
doi: 10.1007/s00039-011-0127-6. |
[7] |
J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, On the concentration of points of polynomial maps and applications, Math. Zeit., 272 (2012), 825-837.
doi: 10.1007/s00209-011-0959-7. |
[8] |
J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, Isomorphism classes of elliptic curves over a finite field in some thin families, Math. Res. Letters, 19 (2012), 335-343.
doi: 10.4310/MRL.2012.v19.n2.a6. |
[9] |
A. Dubickas, M. Sha and I. E. Shparlinski, Explicit form of Cassels' $p$-adic embedding theorem for number fields, Canad. J. Math., to appear. |
[10] |
O. Garcia-Morchon, D. Gómez-Pérez, J. Gutierrez, R. Rietman, B. Schoenmakers and L. Tolhuizen, HIMMO: A lightweight collusion-resistant key predistribution scheme, Cryptology ePrint Archive: Report 2014/698, available at http://eprint.iacr.org/2014/698 |
[11] |
O. Garcia-Morchon, D. Gómez-Pérez, J. Gutierrez, R. Rietman and L. Tolhuizen, The MMO problem, in Proc. 39th Int. Symp. Symbol. Algebr. Comput. - ISSAC'14, ACM, 2014, 186-193.
doi: 10.1145/2608628.2608643. |
[12] |
O. Garcia-Morchon, R. Rietman, I. E. Shparlinski and L. Tolhuizen, Interpolation and approximation of polynomials in finite fields over a short interval from noisy values, Experim. Math., 23 (2014), 241-260.
doi: 10.1080/10586458.2014.890918. |
[13] |
A. Granville, I. E. Shparlinski and A. Zaharescu, On the distribution of rational functions along a curve over $\mathbbF_p$ and residue races, J. Number Theory, 112 (2005), 216-237.
doi: 10.1016/j.jnt.2005.02.002. |
[14] |
S. Ling, I. E. Shparlinski, R. Steinfeld and H. Wang, On the modular inversion hidden number problem, J. Symb. Comp., 47 (2012), 358-367.
doi: 10.1016/j.jsc.2011.09.002. |
[15] |
M. Nair and G. Tenenbaum, Short sums of certain arithmetic functions, Acta Math., 180 (1998), 119-144.
doi: 10.1007/BF02392880. |
[16] |
P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math., 313 (1980), 161-170.
doi: 10.1515/crll.1980.313.161. |
[17] |
I. E. Shparlinski, Playing "Hide-and-Seek'' with numbers: The hidden number problem, lattices and exponential sums, Proc. Symp. Appl. Math., Amer. Math. Soc., 62 (2005), 153-177.
doi: 10.1090/psapm/062/2211876. |
[18] |
I. E. Shparlinski, Modular hyperbolas, Jap. J. Math., 7 (2012), 235-294.
doi: 10.1007/s11537-012-1140-8. |
[19] |
M. Vâjâitu and A. Zaharescu, Distribution of values of rational maps on the $\mathbbF_p$-points on an affine curve, Monatsh. Math., 136 (2002), 81-86.
doi: 10.1007/s006050200035. |
[1] |
Santanu Sarkar. Analysis of Hidden Number Problem with Hidden Multiplier. Advances in Mathematics of Communications, 2017, 11 (4) : 805-811. doi: 10.3934/amc.2017059 |
[2] |
Guglielmo Feltrin, Elisa Sovrano, Andrea Tellini. On the number of positive solutions to an indefinite parameter-dependent Neumann problem. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 21-71. doi: 10.3934/dcds.2021107 |
[3] |
Mustapha Ait Rami, John Moore. Partial stabilizability and hidden convexity of indefinite LQ problem. Numerical Algebra, Control and Optimization, 2016, 6 (3) : 221-239. doi: 10.3934/naco.2016009 |
[4] |
Salomón Alarcón. Multiple solutions for a critical nonhomogeneous elliptic problem in domains with small holes. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1269-1289. doi: 10.3934/cpaa.2009.8.1269 |
[5] |
E. Muñoz Garcia, R. Pérez-Marco. Diophantine conditions in small divisors and transcendental number theory. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1401-1409. doi: 10.3934/dcds.2003.9.1401 |
[6] |
Yang Wang. The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem. Communications on Pure and Applied Analysis, 2011, 10 (2) : 731-744. doi: 10.3934/cpaa.2011.10.731 |
[7] |
G.F. Webb. The prime number periodical cicada problem. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 387-399. doi: 10.3934/dcdsb.2001.1.387 |
[8] |
Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 |
[9] |
Batoul Abdelaziz, Abdellatif El Badia, Ahmad El Hajj. Some remarks on the small electromagnetic inhomogeneities reconstruction problem. Inverse Problems and Imaging, 2017, 11 (6) : 1027-1046. doi: 10.3934/ipi.2017047 |
[10] |
Massimo Grossi. On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29 (6) : 4215-4228. doi: 10.3934/era.2021080 |
[11] |
Yonggeun Cho, Tohru Ozawa. On small amplitude solutions to the generalized Boussinesq equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 691-711. doi: 10.3934/dcds.2007.17.691 |
[12] |
Feng Ma, Mingfang Ni. A two-phase method for multidimensional number partitioning problem. Numerical Algebra, Control and Optimization, 2013, 3 (2) : 203-206. doi: 10.3934/naco.2013.3.203 |
[13] |
F. D. Araruna, F. O. Matias, M. P. Matos, S. M. S. Souza. Hidden regularity for the Kirchhoff equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1049-1056. doi: 10.3934/cpaa.2008.7.1049 |
[14] |
Joanna Tyrcha, John Hertz. Network inference with hidden units. Mathematical Biosciences & Engineering, 2014, 11 (1) : 149-165. doi: 10.3934/mbe.2014.11.149 |
[15] |
Fabio Scalco Dias, Luis Fernando Mello. The center--focus problem and small amplitude limit cycles in rigid systems. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1627-1637. doi: 10.3934/dcds.2012.32.1627 |
[16] |
Han Yang. A singular perturbed problem for semilinear wave equations with small parameter. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 473-488. doi: 10.3934/dcds.1999.5.473 |
[17] |
Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005 |
[18] |
Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024 |
[19] |
Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183 |
[20] |
Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129 |
2021 Impact Factor: 1.015
Tools
Metrics
Other articles
by authors
[Back to Top]