May  2015, 9(2): 177-197. doi: 10.3934/amc.2015.9.177

Cyclic orbit codes and stabilizer subfields

1. 

University of Kentucky, Department of Mathematics, Lexington, KY 40506-0027

2. 

School of Mathematical Sciences, University of Northern Colorado, Greeley, CO 80639, United States

3. 

Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, United States

Received  March 2014 Published  May 2015

Cyclic orbit codes are constant dimension subspace codes that arise as the orbit of a cyclic subgroup of the general linear group acting on subspaces in the given ambient space. With the aid of the largest subfield over which the given subspace is a vector space, the cardinality of the orbit code can be determined, and estimates for its distance can be found. This subfield is closely related to the stabilizer of the generating subspace. Finally, with a linkage construction larger, and longer, constant dimension codes can be derived from cyclic orbit codes without compromising the distance.
Citation: Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177
References:
[1]

R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, Network information flow,, IEEE Trans. Inf. Theory, IT-46 (2000), 1204.  doi: 10.1109/18.850663.  Google Scholar

[2]

M. Braun, T. Etzion, P. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems,, preprint, ().   Google Scholar

[3]

S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho and L. Spence, The maximum size of a partial $3$-spread in a finite vector space over $\mathbb F_2$,, Des. Codes Crypt., 54 (2010), 101.  doi: 10.1007/s10623-009-9311-1.  Google Scholar

[4]

A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding,, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., (2010), 1811.   Google Scholar

[5]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams,, IEEE Trans. Inf. Theory, IT-55 (2009), 2909.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[6]

T. Etzion and A. Vardy, Error-correcting codes in projective geometry,, IEEE Trans. Inf. Theory, IT-57 (2011), 1165.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[7]

T. Etzion and A. Vardy, On $q$-analogs of Steiner systems and covering designs,, Adv. Math. Commun., 5 (2011), 161.  doi: 10.3934/amc.2011.5.161.  Google Scholar

[8]

E. M. Gabidulin, Theory of codes with maximal rank distance,, Probl. Inf. Transm., 21 (1985), 1.   Google Scholar

[9]

E. M. Gabidulin, N. I. Pilipchuk and M. Bossert, Decoding of random network codes,, Probl. Inf. Trans. (Engl. Transl.), 46 (2010), 300.  doi: 10.1134/S0032946010040034.  Google Scholar

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes,, in Proc. 12th IMA Conf. Crypt. Coding, (2009), 1.  doi: 10.1007/978-3-642-10868-6_1.  Google Scholar

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding,, IEEE Trans. Inf. Theory, IT-54 (2008), 3579.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[12]

A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance,, in Mathematical Methods in Computer Science (eds. J. Calmet, (2008), 31.  doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[13]

J. Rosenthal and A.-L. Trautmann, A complete characterization of irreducible cyclic orbit codes and their Plücker embedding,, Des. Codes Crypt., 66 (2013), 275.  doi: 10.1007/s10623-012-9691-5.  Google Scholar

[14]

D. Silva and F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding,, IEEE Trans. Inf. Theory, IT-54 (2008), 3951.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[15]

A.-L. Trautmann, Isometry and automorphisms of constant dimension codes,, Adv. Math. Commun., 7 (2013), 147.  doi: 10.3934/amc.2013.7.147.  Google Scholar

[16]

A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes,, IEEE Trans. Inf. Theory, IT-59 (2013), 7386.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[17]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes,, Des. Codes Crypt., 50 (2009), 163.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

show all references

References:
[1]

R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung, Network information flow,, IEEE Trans. Inf. Theory, IT-46 (2000), 1204.  doi: 10.1109/18.850663.  Google Scholar

[2]

M. Braun, T. Etzion, P. Östergård, A. Vardy and A. Wassermann, Existence of $q$-analogs of Steiner systems,, preprint, ().   Google Scholar

[3]

S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho and L. Spence, The maximum size of a partial $3$-spread in a finite vector space over $\mathbb F_2$,, Des. Codes Crypt., 54 (2010), 101.  doi: 10.1007/s10623-009-9311-1.  Google Scholar

[4]

A. Elsenhans, A. Kohnert and A. Wassermann, Construction of codes for network coding,, in Proc. 19th Int. Symp. Math. Theory Netw. Syst., (2010), 1811.   Google Scholar

[5]

T. Etzion and N. Silberstein, Error-correcting codes in projective spaces via rank-metric codes and Ferrers diagrams,, IEEE Trans. Inf. Theory, IT-55 (2009), 2909.  doi: 10.1109/TIT.2009.2021376.  Google Scholar

[6]

T. Etzion and A. Vardy, Error-correcting codes in projective geometry,, IEEE Trans. Inf. Theory, IT-57 (2011), 1165.  doi: 10.1109/TIT.2010.2095232.  Google Scholar

[7]

T. Etzion and A. Vardy, On $q$-analogs of Steiner systems and covering designs,, Adv. Math. Commun., 5 (2011), 161.  doi: 10.3934/amc.2011.5.161.  Google Scholar

[8]

E. M. Gabidulin, Theory of codes with maximal rank distance,, Probl. Inf. Transm., 21 (1985), 1.   Google Scholar

[9]

E. M. Gabidulin, N. I. Pilipchuk and M. Bossert, Decoding of random network codes,, Probl. Inf. Trans. (Engl. Transl.), 46 (2010), 300.  doi: 10.1134/S0032946010040034.  Google Scholar

[10]

A. Khaleghi, D. Silva and F. R. Kschischang, Subspace codes,, in Proc. 12th IMA Conf. Crypt. Coding, (2009), 1.  doi: 10.1007/978-3-642-10868-6_1.  Google Scholar

[11]

R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding,, IEEE Trans. Inf. Theory, IT-54 (2008), 3579.  doi: 10.1109/TIT.2008.926449.  Google Scholar

[12]

A. Kohnert and S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance,, in Mathematical Methods in Computer Science (eds. J. Calmet, (2008), 31.  doi: 10.1007/978-3-540-89994-5_4.  Google Scholar

[13]

J. Rosenthal and A.-L. Trautmann, A complete characterization of irreducible cyclic orbit codes and their Plücker embedding,, Des. Codes Crypt., 66 (2013), 275.  doi: 10.1007/s10623-012-9691-5.  Google Scholar

[14]

D. Silva and F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding,, IEEE Trans. Inf. Theory, IT-54 (2008), 3951.  doi: 10.1109/TIT.2008.928291.  Google Scholar

[15]

A.-L. Trautmann, Isometry and automorphisms of constant dimension codes,, Adv. Math. Commun., 7 (2013), 147.  doi: 10.3934/amc.2013.7.147.  Google Scholar

[16]

A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes,, IEEE Trans. Inf. Theory, IT-59 (2013), 7386.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[17]

S.-T. Xia and F.-W. Fu, Johnson type bounds on constant dimension codes,, Des. Codes Crypt., 50 (2009), 163.  doi: 10.1007/s10623-008-9221-7.  Google Scholar

[1]

Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020035

[2]

Anna-Lena Trautmann. Isometry and automorphisms of constant dimension codes. Advances in Mathematics of Communications, 2013, 7 (2) : 147-160. doi: 10.3934/amc.2013.7.147

[3]

Natalia Silberstein, Tuvi Etzion. Large constant dimension codes and lexicodes. Advances in Mathematics of Communications, 2011, 5 (2) : 177-189. doi: 10.3934/amc.2011.5.177

[4]

Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033

[5]

Roland D. Barrolleta, Emilio Suárez-Canedo, Leo Storme, Peter Vandendriessche. On primitive constant dimension codes and a geometrical sunflower bound. Advances in Mathematics of Communications, 2017, 11 (4) : 757-765. doi: 10.3934/amc.2017055

[6]

Daniele Bartoli, Matteo Bonini, Massimo Giulietti. Constant dimension codes from Riemann-Roch spaces. Advances in Mathematics of Communications, 2017, 11 (4) : 705-713. doi: 10.3934/amc.2017051

[7]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[8]

Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023

[9]

Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147

[10]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[11]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[12]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

[13]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[14]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[15]

Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048

[16]

Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020034

[17]

Łukasz Struski, Jacek Tabor, Tomasz Kułaga. Cone-fields without constant orbit core dimension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3651-3664. doi: 10.3934/dcds.2012.32.3651

[18]

Martianus Frederic Ezerman, San Ling, Patrick Solé, Olfa Yemen. From skew-cyclic codes to asymmetric quantum codes. Advances in Mathematics of Communications, 2011, 5 (1) : 41-57. doi: 10.3934/amc.2011.5.41

[19]

Yunwen Liu, Longjiang Qu, Chao Li. New constructions of systematic authentication codes from three classes of cyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 1-16. doi: 10.3934/amc.2018001

[20]

Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (11)

[Back to Top]