May  2015, 9(2): 199-210. doi: 10.3934/amc.2015.9.199

A class of quaternary sequences with low correlation

1. 

Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, China

2. 

Department of Informatics, University of Bergen, N-5020 Bergen

Received  March 2014 Revised  November 2014 Published  May 2015

A class of quaternary sequences $\mathbb{S}_{\lambda}$ had been proven to be optimal for some special values of $\lambda$. In this note, $\mathbb{S}_{\lambda}$ is investigated for all $\lambda$ by virtue of the $\mathbb{Z}_4$-valued quadratic forms over Galois rings. As a consequence, a new class of quaternary sequences with low correlation is obtained and the correlation distribution is also completely determined. It also turns out that the known optimal quaternary sequences $\mathbb{S}_{\lambda}$ for particular $\lambda$ can be easily obtained from our approach.
Citation: Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199
References:
[1]

IEEE Trans. Inf. Theory, 14 (1992), 1101-1113. doi: 10.1109/18.135649.  Google Scholar

[2]

IEEE Trans. Inf. Theory, 40 (1994), 532-537. doi: 10.1109/18.312181.  Google Scholar

[3]

Annals Math., 95 (1972), 368-383. doi: 10.2307/1970804.  Google Scholar

[4]

John Wiley, 1996. Google Scholar

[5]

IEEE Trans. Inf. Theory, 14 (1968), 154-156. doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdman, 1998.  Google Scholar

[7]

IEEE Trans. Inf. Theory, 55 (2009), 458-470. doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

IEEE Trans. Inf. Theory, 54 (2008), 3130-3139. doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

Coordinated Sci. Lab., Univ. Illinois Urbana-Champaign, Tech. Rep. R-285, 1966. Google Scholar

[10]

IEEE Trans. Inf. Theory, 49 (2003), 3059-3065. doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

IEEE Trans. Inf. Theory, 42 (1996), 579-592. doi: 10.1109/18.485726.  Google Scholar

[12]

IEEE Trans. Inf. Theory, 57 (2011), 3815-3824. doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

IEEE Trans. Inf. Theory, 55 (2009), 5803-5810. doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

Soviet Math. Dokl., 12 (1971), 197-201.  Google Scholar

[15]

IEEE Trans. Inf. Theory, 57 (2011), 2295-2300. doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

Des. Codes Crypt., 53 (2009), 137-148. doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

IEEE Trans. Inf. Theory, 55 (2009), 433-436. doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

IEEE Trans. Inf. Theory, 53 (2007), 433-436. doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

in Sequences and Their Applications - SETA 2004, 2005, 243-254. doi: 10.1007/11423461_17.  Google Scholar

[20]

Ph.D thesis, Dept. Elec. Eng., Indian Inst. Technol., Kanpur, 1992. Google Scholar

[21]

Appl. Algebra Eng. Commun. Comput., 9 (1998), 161-191. doi: 10.1007/s002000050101.  Google Scholar

[22]

IEEE Trans. Inf. Theory, 20 (1974), 397-399. doi: 10.1109/TIT.1974.1055219.  Google Scholar

show all references

References:
[1]

IEEE Trans. Inf. Theory, 14 (1992), 1101-1113. doi: 10.1109/18.135649.  Google Scholar

[2]

IEEE Trans. Inf. Theory, 40 (1994), 532-537. doi: 10.1109/18.312181.  Google Scholar

[3]

Annals Math., 95 (1972), 368-383. doi: 10.2307/1970804.  Google Scholar

[4]

John Wiley, 1996. Google Scholar

[5]

IEEE Trans. Inf. Theory, 14 (1968), 154-156. doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), Elsevier, Amsterdman, 1998.  Google Scholar

[7]

IEEE Trans. Inf. Theory, 55 (2009), 458-470. doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

IEEE Trans. Inf. Theory, 54 (2008), 3130-3139. doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

Coordinated Sci. Lab., Univ. Illinois Urbana-Champaign, Tech. Rep. R-285, 1966. Google Scholar

[10]

IEEE Trans. Inf. Theory, 49 (2003), 3059-3065. doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

IEEE Trans. Inf. Theory, 42 (1996), 579-592. doi: 10.1109/18.485726.  Google Scholar

[12]

IEEE Trans. Inf. Theory, 57 (2011), 3815-3824. doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

IEEE Trans. Inf. Theory, 55 (2009), 5803-5810. doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

Soviet Math. Dokl., 12 (1971), 197-201.  Google Scholar

[15]

IEEE Trans. Inf. Theory, 57 (2011), 2295-2300. doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

Des. Codes Crypt., 53 (2009), 137-148. doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

IEEE Trans. Inf. Theory, 55 (2009), 433-436. doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

IEEE Trans. Inf. Theory, 53 (2007), 433-436. doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

in Sequences and Their Applications - SETA 2004, 2005, 243-254. doi: 10.1007/11423461_17.  Google Scholar

[20]

Ph.D thesis, Dept. Elec. Eng., Indian Inst. Technol., Kanpur, 1992. Google Scholar

[21]

Appl. Algebra Eng. Commun. Comput., 9 (1998), 161-191. doi: 10.1007/s002000050101.  Google Scholar

[22]

IEEE Trans. Inf. Theory, 20 (1974), 397-399. doi: 10.1109/TIT.1974.1055219.  Google Scholar

[1]

Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021008

[2]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[3]

Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020134

[4]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[5]

Thomas Alazard. A minicourse on the low Mach number limit. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : 365-404. doi: 10.3934/dcdss.2008.1.365

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2543-2557. doi: 10.3934/dcds.2020374

[7]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, 2021, 15 (3) : 519-537. doi: 10.3934/ipi.2021003

[8]

Mario Pulvirenti, Sergio Simonella. On the cardinality of collisional clusters for hard spheres at low density. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3903-3914. doi: 10.3934/dcds.2021021

[9]

Mehmet Duran Toksari, Emel Kizilkaya Aydogan, Berrin Atalay, Saziye Sari. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021044

[10]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[11]

F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605

[12]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[13]

Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141

[14]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[15]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[16]

Emily McMillon, Allison Beemer, Christine A. Kelley. Extremal absorbing sets in low-density parity-check codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021003

[17]

Jan Rychtář, Dewey T. Taylor. Moran process and Wright-Fisher process favor low variability. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3491-3504. doi: 10.3934/dcdsb.2020242

[18]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2653-2676. doi: 10.3934/dcds.2020379

[20]

Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021026

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (132)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]