-
Previous Article
Binary codes from reflexive uniform subset graphs on $3$-sets
- AMC Home
- This Issue
-
Next Article
Cyclic orbit codes and stabilizer subfields
A class of quaternary sequences with low correlation
1. | Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, China |
2. | Department of Informatics, University of Bergen, N-5020 Bergen |
References:
[1] |
S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.
doi: 10.1109/18.135649. |
[2] |
S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.
doi: 10.1109/18.312181. |
[3] |
E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.
doi: 10.2307/1970804. |
[4] |
P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996). Google Scholar |
[5] |
R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.
doi: 10.1109/TIT.1968.1054106. |
[6] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).
|
[7] |
W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.
doi: 10.1109/TIT.2008.2008122. |
[8] |
A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.
doi: 10.1109/TIT.2008.924727. |
[9] |
T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966). Google Scholar |
[10] |
S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.
doi: 10.1109/TIT.2003.818399. |
[11] |
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.
doi: 10.1109/18.485726. |
[12] |
N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.
doi: 10.1109/TIT.2011.2132670. |
[13] |
K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.
doi: 10.1109/TIT.2009.2032818. |
[14] |
V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.
|
[15] |
X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.
doi: 10.1109/TIT.2011.2110290. |
[16] |
X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.
doi: 10.1007/s10623-009-9294-y. |
[17] |
X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.
doi: 10.1109/TIT.2009.2013023. |
[18] |
X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.
doi: 10.1109/TIT.2006.887502. |
[19] |
X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.
doi: 10.1007/11423461_17. |
[20] |
P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992). Google Scholar |
[21] |
P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.
doi: 10.1007/s002000050101. |
[22] |
L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.
doi: 10.1109/TIT.1974.1055219. |
show all references
References:
[1] |
S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.
doi: 10.1109/18.135649. |
[2] |
S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.
doi: 10.1109/18.312181. |
[3] |
E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.
doi: 10.2307/1970804. |
[4] |
P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996). Google Scholar |
[5] |
R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.
doi: 10.1109/TIT.1968.1054106. |
[6] |
T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).
|
[7] |
W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.
doi: 10.1109/TIT.2008.2008122. |
[8] |
A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.
doi: 10.1109/TIT.2008.924727. |
[9] |
T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966). Google Scholar |
[10] |
S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.
doi: 10.1109/TIT.2003.818399. |
[11] |
P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.
doi: 10.1109/18.485726. |
[12] |
N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.
doi: 10.1109/TIT.2011.2132670. |
[13] |
K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.
doi: 10.1109/TIT.2009.2032818. |
[14] |
V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.
|
[15] |
X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.
doi: 10.1109/TIT.2011.2110290. |
[16] |
X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.
doi: 10.1007/s10623-009-9294-y. |
[17] |
X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.
doi: 10.1109/TIT.2009.2013023. |
[18] |
X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.
doi: 10.1109/TIT.2006.887502. |
[19] |
X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.
doi: 10.1007/11423461_17. |
[20] |
P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992). Google Scholar |
[21] |
P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.
doi: 10.1007/s002000050101. |
[22] |
L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.
doi: 10.1109/TIT.1974.1055219. |
[1] |
Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020465 |
[2] |
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040 |
[3] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[4] |
Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383 |
[5] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[6] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[7] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[8] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[9] |
Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267 |
[10] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[11] |
Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230 |
[12] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[13] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[14] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
[15] |
Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304 |
[16] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[17] |
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032 |
[18] |
Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026 |
[19] |
Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076 |
[20] |
Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334 |
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]