May  2015, 9(2): 199-210. doi: 10.3934/amc.2015.9.199

A class of quaternary sequences with low correlation

1. 

Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu, Sichuan 610031, China, China

2. 

Department of Informatics, University of Bergen, N-5020 Bergen

Received  March 2014 Revised  November 2014 Published  May 2015

A class of quaternary sequences $\mathbb{S}_{\lambda}$ had been proven to be optimal for some special values of $\lambda$. In this note, $\mathbb{S}_{\lambda}$ is investigated for all $\lambda$ by virtue of the $\mathbb{Z}_4$-valued quadratic forms over Galois rings. As a consequence, a new class of quaternary sequences with low correlation is obtained and the correlation distribution is also completely determined. It also turns out that the known optimal quaternary sequences $\mathbb{S}_{\lambda}$ for particular $\lambda$ can be easily obtained from our approach.
Citation: Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199
References:
[1]

S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.  doi: 10.1109/18.135649.  Google Scholar

[2]

S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.  doi: 10.1109/18.312181.  Google Scholar

[3]

E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.  doi: 10.2307/1970804.  Google Scholar

[4]

P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996).   Google Scholar

[5]

R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).   Google Scholar

[7]

W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.  doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.  doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966).   Google Scholar

[10]

S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.  doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.  doi: 10.1109/18.485726.  Google Scholar

[12]

N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.  doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.  doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.   Google Scholar

[15]

X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.  doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.  doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.  doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.  doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.  doi: 10.1007/11423461_17.  Google Scholar

[20]

P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992).   Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.  doi: 10.1007/s002000050101.  Google Scholar

[22]

L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

show all references

References:
[1]

S. Boztas, R. Hammons and P. V. Kumar, $4$-phase sequences with near-optimum correlation properties,, IEEE Trans. Inf. Theory, 14 (1992), 1101.  doi: 10.1109/18.135649.  Google Scholar

[2]

S. Boztas and P. V. Kumar, Binary sequences with Gold-like correlation but larger linear span,, IEEE Trans. Inf. Theory, 40 (1994), 532.  doi: 10.1109/18.312181.  Google Scholar

[3]

E. H. Brown, Generalizations of the Kervaire invariant,, Annals Math., 95 (1972), 368.  doi: 10.2307/1970804.  Google Scholar

[4]

P. Fan and M. Darnell, Sequence Design for Communications Applications,, John Wiley, (1996).   Google Scholar

[5]

R. Gold, Maximal recursive sequences with $3$-valued recursive crosscorrelation functions,, IEEE Trans. Inf. Theory, 14 (1968), 154.  doi: 10.1109/TIT.1968.1054106.  Google Scholar

[6]

T. Helleseth and P. V. Kumar, Sequences with low correlation,, in Handbook of Coding Theory (eds. V.S. Pless and W.C. Huffman), (1998).   Google Scholar

[7]

W. Jiang, L. Hu, X. Tang and X. Zeng, New optimal quadriphase sequences with larger linear span,, IEEE Trans. Inf. Theory, 55 (2009), 458.  doi: 10.1109/TIT.2008.2008122.  Google Scholar

[8]

A. Johansen, T. Helleseth and X. Tang, The correlation distribution of quaternary sequences of period $2(2^n-1)$,, IEEE Trans. Inf. Theory, 54 (2008), 3130.  doi: 10.1109/TIT.2008.924727.  Google Scholar

[9]

T. Kasami, Weight Distribution Formula for Some Class of Cyclic Codes,, Coordinated Sci. Lab., (1966).   Google Scholar

[10]

S. H. Kim and J. S. No, New families of binary sequences with low crosscorrelation property,, IEEE Trans. Inf. Theory, 49 (2003), 3059.  doi: 10.1109/TIT.2003.818399.  Google Scholar

[11]

P. V. Kumar, T. Helleseth, A. R. Calderbank and A. R. Hammons, Large families of quaternary sequences with low correlation,, IEEE Trans. Inf. Theory, 42 (1996), 579.  doi: 10.1109/18.485726.  Google Scholar

[12]

N. Li, X. Tang, X. Zeng and L. Hu, On the correlation distributions of optimal quaternary sequence family $\mathcal U$ and optimal binary sequence family $\mathcal V$,, IEEE Trans. Inf. Theory, 57 (2011), 3815.  doi: 10.1109/TIT.2011.2132670.  Google Scholar

[13]

K.-U. Schmidt, $\mathbb Z_4$-valued quadratic forms and quaternary sequence families,, IEEE Trans. Inf. Theory, 55 (2009), 5803.  doi: 10.1109/TIT.2009.2032818.  Google Scholar

[14]

V. Sidelnikov, On mutual correlation of sequences,, Soviet Math. Dokl., 12 (1971), 197.   Google Scholar

[15]

X. Tang and T. Helleseth, Generic construction of quaternary sequences of period $2N$ with low correlation from quaternary sequences of odd period $N$,, IEEE Trans. Inf. Theory, 57 (2011), 2295.  doi: 10.1109/TIT.2011.2110290.  Google Scholar

[16]

X. Tang, T. Helleseth and P. Fan, A new optimal quaternary sequence family of length $2(2^n-1)$ obtained from the orthogonal transformation of families $\mathcal B$ and $\mathcal C$,, Des. Codes Crypt., 53 (2009), 137.  doi: 10.1007/s10623-009-9294-y.  Google Scholar

[17]

X. Tang, T. Helleseth, L. Hu and W. Jiang, Two new families of optimal binary sequences obtained from quaternary sequences,, IEEE Trans. Inf. Theory, 55 (2009), 433.  doi: 10.1109/TIT.2009.2013023.  Google Scholar

[18]

X. Tang and P. Udaya, A note on the optimal quadriphase sequences families,, IEEE Trans. Inf. Theory, 53 (2007), 433.  doi: 10.1109/TIT.2006.887502.  Google Scholar

[19]

X. Tang, P. Udaya and P. Fan, Quadriphase sequences obtained from binary quadratic form sequences,, in Sequences and Their Applications - SETA 2004, (2004), 243.  doi: 10.1007/11423461_17.  Google Scholar

[20]

P. Udaya, Polyphase and Frequency Hopping Sequences Obtained from Finite Rings,, Ph.D thesis, (1992).   Google Scholar

[21]

P. Udaya and M. U. Siddiqi, Optimal and suboptimal quadriphase sequences derived from maximal length sequences over $\mathbb Z_4$,, Appl. Algebra Eng. Commun. Comput., 9 (1998), 161.  doi: 10.1007/s002000050101.  Google Scholar

[22]

L. R. Welch, Lower bounds on the maximum crosscorrelation on the signals,, IEEE Trans. Inf. Theory, 20 (1974), 397.  doi: 10.1109/TIT.1974.1055219.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero odd-periodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 23-33. doi: 10.3934/amc.2020040

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[5]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[6]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[7]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[8]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[9]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[10]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[11]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[14]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[15]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[16]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[17]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[18]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[20]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]