Citation: |
[1] |
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.doi: 10.1109/TIT.2005.847722. |
[2] |
S. T. Choi, J. Y. Kim and J. S. No, On the cross-correlation of a p-ary m-sequence and its decimated sequences by $d = \frac{p^n+1}{p^k+1} + \frac{p^n-1}{2}$, IEICE Trans. Comm., B96 (2013), 2190-2197. |
[3] |
P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576. |
[4] |
C. Ding, Y. Gao and Z. Zhou, Five families of three-weight ternary cyclic codes and their duals, IEEE Trans. Inf. Theory, 59 (2013), 7940-7946.doi: 10.1109/TIT.2013.2281205. |
[5] |
K. Feng and J. Luo, Value distribution of exponential sums from perfect nonlinear functions and their applications, IEEE Trans. Inf. Theory, 53 (2007), 3035-3041.doi: 10.1109/TIT.2007.903153. |
[6] |
K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.doi: 10.1016/j.ffa.2007.03.003. |
[7] |
Z. Hu, X. Li, D. Mills, E. N. Müller, W. Sun, W. Willems, Y. Yang and Z. Zhang, On the crosscorrelation of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 12 (2001), 255-263.doi: 10.1007/s002000100073. |
[8] |
C. Li, N. Li, T. Helleseth and C. Ding, On the weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.doi: 10.1109/TIT.2014.2329694. |
[9] |
R. Lidl and H. Niederreiter, Finite fields, in Encyclopedia of Mathematics and Its Applications, Addison-Wesley, Amsterdam, 1983. |
[10] |
Y. Liu, H. Yan and C. Liu, A class of six-weight cyclic codes and their weight distribution, Des. Codes Cryptogr., published online. doi: 10.1007/s10623-014-9984-y. |
[11] |
J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.doi: 10.1109/TIT.2008.2006424. |
[12] |
C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.doi: 10.1109/TIT.2010.2090272. |
[13] |
E. N. Müller, On the crosscorrelation of sequences over $GF(p)$ with short periods, IEEE Trans. Inf. Theory, 45 (1999), 289-295.doi: 10.1109/18.746820. |
[14] |
G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. Control, 8 (1965), 170-179. |
[15] |
B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.doi: 10.1109/TIT.2012.2210386. |
[16] |
Y. Xia, X. Zeng and L. Hu, Further crosscorrelation properties of sequences with the decimation factor $d = \frac{p^n+1}{p+1} - \frac{p^n-1}{2}$, Appl. Algebra Eng. Commun. Comput., 21 (2010), 329-342.doi: 10.1007/s00200-010-0128-y. |
[17] |
Z. Zhou and C. Ding, Seven families of three-weight cyclic codes, IEEE Trans. Commun., 61 (2013), 4120-4126. |
[18] |
Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.doi: 10.1016/j.ffa.2013.08.005. |
[19] |
Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.doi: 10.1109/TIT.2013.2267722. |