August  2015, 9(3): 277-289. doi: 10.3934/amc.2015.9.277

The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$

1. 

Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, Pin-125001, India, India

2. 

Department of Mathematics, M. D. University, Rohtak, Pin-124001, India

Received  October 2013 Published  July 2015

In this paper, an algorithm is given for computing the weight distributions of all irreducible cyclic codes of dimension $p^jd$ generated by $x^{p^j}-1$, where $p$ is an odd prime, $j\geq 0 $ and $d > 1$. Then the weight distributions of all irreducible cyclic codes of length $p^n$ and $ 2p^n $ over $F_q$, where $n$ is a positive integer, $p$, $q$ are distinct odd primes and $q$ is primitive root modulo $ p^n$, are obtained. The weight distributions of all the irreducible cyclic codes of length $3^{n+1}$ over $F_5$ are also determined explicitly.
Citation: Pankaj Kumar, Monika Sangwan, Suresh Kumar Arora. The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$. Advances in Mathematics of Communications, 2015, 9 (3) : 277-289. doi: 10.3934/amc.2015.9.277
References:
[1]

S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187. doi: 10.1006/ffta.1998.0238.

[2]

L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175.

[3]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960. doi: 10.1109/TIT.2008.2011511.

[4]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110. doi: 10.1016/j.ffa.2004.06.002.

[5]

F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806. doi: 10.1109/TIT.1981.1056420.

[6]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977.

[7]

M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249. doi: 10.1109/18.761277.

[8]

M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl., 3 (1997), 99-113. doi: 10.1006/ffta.1996.0156.

[9]

A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159. doi: 10.1016/j.ffa.2011.07.002.

[10]

A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095. doi: 10.1016/j.ffa.2007.07.004.

[11]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159. doi: 10.1006/jnth.1995.1133.

show all references

References:
[1]

S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187. doi: 10.1006/ffta.1998.0238.

[2]

L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175.

[3]

C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960. doi: 10.1109/TIT.2008.2011511.

[4]

R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110. doi: 10.1016/j.ffa.2004.06.002.

[5]

F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806. doi: 10.1109/TIT.1981.1056420.

[6]

F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977.

[7]

M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249. doi: 10.1109/18.761277.

[8]

M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl., 3 (1997), 99-113. doi: 10.1006/ffta.1996.0156.

[9]

A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159. doi: 10.1016/j.ffa.2011.07.002.

[10]

A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095. doi: 10.1016/j.ffa.2007.07.004.

[11]

M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159. doi: 10.1006/jnth.1995.1133.

[1]

Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059

[2]

Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021002

[3]

Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008

[4]

Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433

[5]

Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021042

[6]

Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017

[7]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[8]

Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395

[9]

Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409

[10]

Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341

[11]

Claude Carlet. Expressing the minimum distance, weight distribution and covering radius of codes by means of the algebraic and numerical normal forms of their indicators. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022047

[12]

Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008

[13]

Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039

[14]

Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006

[15]

Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195

[16]

Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028

[17]

Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004

[18]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[19]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2022, 16 (3) : 571-596. doi: 10.3934/amc.2020124

[20]

Hai Quang Dinh, Atul Gaur, Pratyush Kumar, Manoj Kumar Singh, Abhay Kumar Singh. Cyclic codes over rings of matrices. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022073

2021 Impact Factor: 1.015

Metrics

  • PDF downloads (414)
  • HTML views (0)
  • Cited by (1)

[Back to Top]