-
Previous Article
On weighted minihypers in finite projective spaces of square order
- AMC Home
- This Issue
-
Next Article
High-rate space-time block codes from twisted Laurent series rings
The weight distributions of some irreducible cyclic codes of length $p^n$ and $2p^n$
1. | Department of Mathematics, Guru Jambheshwar University of Science and Technology, Hisar, Pin-125001, India, India |
2. | Department of Mathematics, M. D. University, Rohtak, Pin-124001, India |
References:
[1] |
S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187.
doi: 10.1006/ffta.1998.0238. |
[2] |
L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175. |
[3] |
C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.
doi: 10.1109/TIT.2008.2011511. |
[4] |
R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.
doi: 10.1016/j.ffa.2004.06.002. |
[5] |
F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806.
doi: 10.1109/TIT.1981.1056420. |
[6] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977. |
[7] |
M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249.
doi: 10.1109/18.761277. |
[8] |
M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl., 3 (1997), 99-113.
doi: 10.1006/ffta.1996.0156. |
[9] |
A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159.
doi: 10.1016/j.ffa.2011.07.002. |
[10] |
A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095.
doi: 10.1016/j.ffa.2007.07.004. |
[11] |
M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.
doi: 10.1006/jnth.1995.1133. |
show all references
References:
[1] |
S. K. Arora and M. Pruthi, Minimal cyclic codes of length $2p^n$, Finite Fields Appl., 5 (1999), 177-187.
doi: 10.1006/ffta.1998.0238. |
[2] |
L. D. Baumert and R. J. McEliece, Weights of irreducible cyclic codes, Inform. Control, 20 (1972), 158-175. |
[3] |
C. Ding, The weight distribution of some irreducible cyclic codes, IEEE Trans. Inf. Theory, 55 (2009), 955-960.
doi: 10.1109/TIT.2008.2011511. |
[4] |
R. W. Fitzgerald and J. L. Yucas, Sums of Gauss sums and weights of irreducible codes, Finite Fields Appl., 11 (2005), 89-110.
doi: 10.1016/j.ffa.2004.06.002. |
[5] |
F. J. MacWilliams and J. Seery, The weight distributions of some minimal cyclic codes, IEEE Trans. Inf. Theory, 27 (1981), 796-806.
doi: 10.1109/TIT.1981.1056420. |
[6] |
F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1977. |
[7] |
M. J. Moisio and K. O. Väänänen, Two recursive algorithms for computing the weight distribution of certain irreducible cyclic codes, IEEE Trans. Inf. Theory, 45 (1999), 1244-1249.
doi: 10.1109/18.761277. |
[8] |
M. Pruthi and S. K. Arora, Minimal cyclic codes of prime power length, Finite Fields Appl., 3 (1997), 99-113.
doi: 10.1006/ffta.1996.0156. |
[9] |
A. Sharma and G. K. Bakshi, The weight distributions of some irreducible cyclic codes, Finite Fields Appl., 18 (2012), 144-159.
doi: 10.1016/j.ffa.2011.07.002. |
[10] |
A. Sharma, G. K. Bakshi and M. Raka, The weight distributions of irreducible cyclic codes of length $2^m$, Finite Fields Appl., 13 (2007), 1086-1095.
doi: 10.1016/j.ffa.2007.07.004. |
[11] |
M. van der Vlugt, Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes, J. Number Theory, 55 (1995), 145-159.
doi: 10.1006/jnth.1995.1133. |
[1] |
Gerardo Vega, Jesús E. Cuén-Ramos. The weight distribution of families of reducible cyclic codes through the weight distribution of some irreducible cyclic codes. Advances in Mathematics of Communications, 2020, 14 (3) : 525-533. doi: 10.3934/amc.2020059 |
[2] |
Ricardo A. Podestá, Denis E. Videla. The weight distribution of irreducible cyclic codes associated with decomposable generalized Paley graphs. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021002 |
[3] |
Lanqiang Li, Shixin Zhu, Li Liu. The weight distribution of a class of p-ary cyclic codes and their applications. Advances in Mathematics of Communications, 2019, 13 (1) : 137-156. doi: 10.3934/amc.2019008 |
[4] |
Alexander Barg, Arya Mazumdar, Gilles Zémor. Weight distribution and decoding of codes on hypergraphs. Advances in Mathematics of Communications, 2008, 2 (4) : 433-450. doi: 10.3934/amc.2008.2.433 |
[5] |
Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco. On the weight distribution of the cosets of MDS codes. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021042 |
[6] |
Long Yu, Hongwei Liu. A class of $p$-ary cyclic codes and their weight enumerators. Advances in Mathematics of Communications, 2016, 10 (2) : 437-457. doi: 10.3934/amc.2016017 |
[7] |
Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023 |
[8] |
Eimear Byrne. On the weight distribution of codes over finite rings. Advances in Mathematics of Communications, 2011, 5 (2) : 395-406. doi: 10.3934/amc.2011.5.395 |
[9] |
Sergio R. López-Permouth, Steve Szabo. On the Hamming weight of repeated root cyclic and negacyclic codes over Galois rings. Advances in Mathematics of Communications, 2009, 3 (4) : 409-420. doi: 10.3934/amc.2009.3.409 |
[10] |
Chengju Li, Qin Yue, Ziling Heng. Weight distributions of a class of cyclic codes from $\Bbb F_l$-conjugates. Advances in Mathematics of Communications, 2015, 9 (3) : 341-352. doi: 10.3934/amc.2015.9.341 |
[11] |
Anuradha Sharma, Saroj Rani. Trace description and Hamming weights of irreducible constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (1) : 123-141. doi: 10.3934/amc.2018008 |
[12] |
Fengwei Li, Qin Yue, Fengmei Liu. The weight distributions of constacyclic codes. Advances in Mathematics of Communications, 2017, 11 (3) : 471-480. doi: 10.3934/amc.2017039 |
[13] |
Tim Alderson, Alessandro Neri. Maximum weight spectrum codes. Advances in Mathematics of Communications, 2019, 13 (1) : 101-119. doi: 10.3934/amc.2019006 |
[14] |
Cem Güneri, Ferruh Özbudak, Funda ÖzdemIr. On complementary dual additive cyclic codes. Advances in Mathematics of Communications, 2017, 11 (2) : 353-357. doi: 10.3934/amc.2017028 |
[15] |
Nabil Bennenni, Kenza Guenda, Sihem Mesnager. DNA cyclic codes over rings. Advances in Mathematics of Communications, 2017, 11 (1) : 83-98. doi: 10.3934/amc.2017004 |
[16] |
Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177 |
[17] |
Petr Lisoněk, Layla Trummer. Algorithms for the minimum weight of linear codes. Advances in Mathematics of Communications, 2016, 10 (1) : 195-207. doi: 10.3934/amc.2016.10.195 |
[18] |
Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020124 |
[19] |
Chengju Li, Sunghan Bae, Shudi Yang. Some two-weight and three-weight linear codes. Advances in Mathematics of Communications, 2019, 13 (1) : 195-211. doi: 10.3934/amc.2019013 |
[20] |
Heide Gluesing-Luerssen, Fai-Lung Tsang. A matrix ring description for cyclic convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 55-81. doi: 10.3934/amc.2008.2.55 |
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]