August  2015, 9(3): 291-309. doi: 10.3934/amc.2015.9.291

On weighted minihypers in finite projective spaces of square order

1. 

Technische Hochschule Mittelhessen, Fachbereich MND, Campus Friedberg, Wilhelm-Leuschner-Straße 13, D-61169 Friedberg, Germany

2. 

Justus-Liebig-Universität, Mathematisches Institut, Arndtstraβe 2, D-35392 Giessen, Germany

3. 

Department of Mathematics, Ghent University, Krijgslaan 281 - S22, 9000 Ghent

Received  December 2013 Published  July 2015

In [11], weighted $\{\delta(q+1),\delta;k-1,q\}$-minihypers, $q$ square, were characterized as a sum of lines and Baer subgeometries $PG(3,\sqrt{q})$ provided $\delta$ is sufficiently small. We extend this result to a new characterization result on weighted $\{\delta v_{\mu+1},\delta v_{\mu};k-1,q\}$-minihypers. We prove that such minihypers are sums of $\mu$-dimensional subspaces and of (projected) $(2\mu+1)$-dimensional Baer subgeometries.
Citation: Linda Beukemann, Klaus Metsch, Leo Storme. On weighted minihypers in finite projective spaces of square order. Advances in Mathematics of Communications, 2015, 9 (3) : 291-309. doi: 10.3934/amc.2015.9.291
References:
[1]

A. A. Bruen, Intersection of Baer subgeometries,, Arch. Math., 39 (1982), 285. doi: 10.1007/BF01899537. Google Scholar

[2]

G. Donati and N. Durante, On the intersection of two subgeometries of $\PG(n, q)$,, Electron. Notes Discrete Math., 26 (2006), 51. doi: 10.1016/j.endm.2006.08.009. Google Scholar

[3]

S. Ferret and L. Storme, Minihypers and linear codes meeting the Griesmer bound: Improvements to results of Hamada, Helleseth and Maekawa,, Des. Codes Cryptogr., 25 (2002), 143. doi: 10.1023/A:1013852330818. Google Scholar

[4]

P. Govaerts and L. Storme, On a particular class of minihypers and its applications. II. Improvements for $q$ square,, J. Combin. Theory Ser. A, 97 (2002), 369. doi: 10.1006/jcta.2001.3219. Google Scholar

[5]

P. Govaerts and L. Storme, On a particular class of minihypers and its applications. I. The result for general $q$,, Des. Codes Cryptogr., 28 (2003), 51. doi: 10.1023/A:1021823703405. Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. Google Scholar

[7]

N. Hamada, A characterization of some $[n,k,d;q]$-codes meeting the Griesmer bound using minihypers in a finite projective geometry,, Discrete Math., 116 (1993), 229. doi: 10.1016/0012-365X(93)90404-H. Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes $(q>(h-1)^2, h\geq 3)$ meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925. Google Scholar

[9]

N. Hamada and T. Helleseth, Codes and minihypers,, in Optimal Codes and Related Topics, (2001), 79. Google Scholar

[10]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170. Google Scholar

[11]

L. Storme, Weighted ${\delta(q+1),\delta;k-1,q}$-minihypers,, Discrete Math., 308 (2008), 339. doi: 10.1016/j.disc.2006.11.048. Google Scholar

[12]

M. Sved, Baer subspaces in the $n$-dimensional projective space,, in Combinatorial Mathematics X, (1983), 375. doi: 10.1007/BFb0071531. Google Scholar

show all references

References:
[1]

A. A. Bruen, Intersection of Baer subgeometries,, Arch. Math., 39 (1982), 285. doi: 10.1007/BF01899537. Google Scholar

[2]

G. Donati and N. Durante, On the intersection of two subgeometries of $\PG(n, q)$,, Electron. Notes Discrete Math., 26 (2006), 51. doi: 10.1016/j.endm.2006.08.009. Google Scholar

[3]

S. Ferret and L. Storme, Minihypers and linear codes meeting the Griesmer bound: Improvements to results of Hamada, Helleseth and Maekawa,, Des. Codes Cryptogr., 25 (2002), 143. doi: 10.1023/A:1013852330818. Google Scholar

[4]

P. Govaerts and L. Storme, On a particular class of minihypers and its applications. II. Improvements for $q$ square,, J. Combin. Theory Ser. A, 97 (2002), 369. doi: 10.1006/jcta.2001.3219. Google Scholar

[5]

P. Govaerts and L. Storme, On a particular class of minihypers and its applications. I. The result for general $q$,, Des. Codes Cryptogr., 28 (2003), 51. doi: 10.1023/A:1021823703405. Google Scholar

[6]

J. H. Griesmer, A bound for error-correcting codes,, IBM J. Res. Develop., 4 (1960), 532. Google Scholar

[7]

N. Hamada, A characterization of some $[n,k,d;q]$-codes meeting the Griesmer bound using minihypers in a finite projective geometry,, Discrete Math., 116 (1993), 229. doi: 10.1016/0012-365X(93)90404-H. Google Scholar

[8]

N. Hamada and T. Helleseth, A characterization of some $q$-ary codes $(q>(h-1)^2, h\geq 3)$ meeting the Griesmer bound,, Math. Japonica, 38 (1993), 925. Google Scholar

[9]

N. Hamada and T. Helleseth, Codes and minihypers,, in Optimal Codes and Related Topics, (2001), 79. Google Scholar

[10]

G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes,, Inform. Control, 8 (1965), 170. Google Scholar

[11]

L. Storme, Weighted ${\delta(q+1),\delta;k-1,q}$-minihypers,, Discrete Math., 308 (2008), 339. doi: 10.1016/j.disc.2006.11.048. Google Scholar

[12]

M. Sved, Baer subspaces in the $n$-dimensional projective space,, in Combinatorial Mathematics X, (1983), 375. doi: 10.1007/BFb0071531. Google Scholar

[1]

J. De Beule, K. Metsch, L. Storme. Characterization results on weighted minihypers and on linear codes meeting the Griesmer bound. Advances in Mathematics of Communications, 2008, 2 (3) : 261-272. doi: 10.3934/amc.2008.2.261

[2]

Ivan Landjev. On blocking sets in projective Hjelmslev planes. Advances in Mathematics of Communications, 2007, 1 (1) : 65-81. doi: 10.3934/amc.2007.1.65

[3]

Nguyen Van Thoai. Decomposition branch and bound algorithm for optimization problems over efficient sets. Journal of Industrial & Management Optimization, 2008, 4 (4) : 647-660. doi: 10.3934/jimo.2008.4.647

[4]

Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55

[5]

Valentina Taddei. Bound sets for floquet boundary value problems: The nonsmooth case. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 459-473. doi: 10.3934/dcds.2000.6.459

[6]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[7]

D. G. Aronson, N. V. Mantzaris, Hans Othmer. Wave propagation and blocking in inhomogeneous media. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 843-876. doi: 10.3934/dcds.2005.13.843

[8]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A flame propagation model on a network with application to a blocking problem. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 825-843. doi: 10.3934/dcdss.2018051

[9]

Mikko Kaasalainen. Dynamical tomography of gravitationally bound systems. Inverse Problems & Imaging, 2008, 2 (4) : 527-546. doi: 10.3934/ipi.2008.2.527

[10]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[11]

Kazuhisa Ichikawa. Synergistic effect of blocking cancer cell invasion revealed by computer simulations. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1189-1202. doi: 10.3934/mbe.2015.12.1189

[12]

M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti. Escaping the trap of 'blocking': A kinetic model linking economic development and political competition. Kinetic & Related Models, 2017, 10 (2) : 423-443. doi: 10.3934/krm.2017016

[13]

Yang Woo Shin, Dug Hee Moon. Throughput of flow lines with unreliable parallel-machine workstations and blocking. Journal of Industrial & Management Optimization, 2017, 13 (2) : 901-916. doi: 10.3934/jimo.2016052

[14]

Thomas Dauer, Marlies Gerber. Generic absence of finite blocking for interior points of Birkhoff billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4871-4893. doi: 10.3934/dcds.2016010

[15]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

[16]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[17]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[18]

Marcin Dumnicki, Łucja Farnik, Halszka Tutaj-Gasińska. Asymptotic Hilbert polynomial and a bound for Waldschmidt constants. Electronic Research Announcements, 2016, 23: 8-18. doi: 10.3934/era.2016.23.002

[19]

Miklós Horváth, Márton Kiss. A bound for ratios of eigenvalues of Schrodinger operators on the real line. Conference Publications, 2005, 2005 (Special) : 403-409. doi: 10.3934/proc.2005.2005.403

[20]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]