Citation: |
[1] |
L. Baumert, W. Mills and R. Ward, Uniform cyclotomy, J. Number Theory, 14 (1982), 67-82.doi: 10.1016/0022-314X(82)90058-0. |
[2] |
N. Boston and G. McGuire, The weight distribution of cyclic codes with two zeros and zeta functions, J. Symb. Comput., 45 (2010), 723-733.doi: 10.1016/j.jsc.2010.03.007. |
[3] |
A. R. Calderbank and J. M. Goethals, Three-weight codes and association schemes, Philips J. Res., 39 (1984), 143-152. |
[4] |
A. Canteaut, P. Charpin and H. Dobbertin, Weight divisibility of cyclic codes, highly nonlinear functions on $\mathbbF_{2^m}$ and crosscorrelation of maximum-length sequences, SIAM J. Discrete Math., 13 (2000), 105-138.doi: 10.1137/S0895480198350057. |
[5] |
C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr., 15 (1998), 125-156.doi: 10.1023/A:1008344232130. |
[6] |
C. Carlet, C. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.doi: 10.1109/TIT.2005.847722. |
[7] |
P. Charpin, Cyclic codes with few weights and Niho exponents, J. Combin. Theory Ser. A, 108 (2004), 247-259.doi: 10.1016/j.jcta.2004.07.001. |
[8] |
P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576. |
[9] |
C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 3297-3304.doi: 10.1109/TIT.2009.2021366. |
[10] |
C. Ding, Y. Liu, C. Ma and L. Zeng, The weight distributions of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 57 (2011), 8000-8006.doi: 10.1109/TIT.2011.2165314. |
[11] |
C. Ding and J. Yang, Hamming weights in irreducible cyclic codes, Discrete Math., 313 (2013), 434-446.doi: 10.1016/j.disc.2012.11.009. |
[12] |
C. Ding, Y. Yang and X. Tang, Optimal sets of frequency hopping sequences from linear cyclic codes, IEEE Trans. Inf. Theory, 56 (2010), 3605-3612.doi: 10.1109/TIT.2010.2048504. |
[13] |
K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.doi: 10.1016/j.ffa.2007.03.003. |
[14] |
T. Feng, On cyclic codes of length $2^{2^r}-1$ with two zeros whose dual codes have three weights, Des. Codes Cryptogr., 62 (2012), 253-258.doi: 10.1007/s10623-011-9514-0. |
[15] |
T. Feng and K. Momihara, Evaluation of the weight distribution of a class of cyclic codes based on index 2 Gauss sums, IEEE Trans. Inf. Theory, 59 (2013), 5980-5984.doi: 10.1109/TIT.2013.2259538. |
[16] |
É. Fouvry and J. Klüners, On the 4-rank of class groups of quadratic number fields, Invent. Math., 167 (2007), 455-513.doi: 10.1007/s00222-006-0021-2. |
[17] |
C. Li, N. Li, T. Helleseth and C. Ding, The weight distributions of several classes of cyclic codes from APN monomials, IEEE Trans. Inf. Theory, 60 (2014), 4710-4721.doi: 10.1109/TIT.2014.2329694. |
[18] |
C. Li and Q. Yue, Weight distribution of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.doi: 10.1109/TIT.2013.2287211. |
[19] |
C. Li, Q. Yue and F. Li, Hamming weights of the duals of cyclic codes with two zeros, IEEE Trans. Inf. Theory, 60 (2014), 3895-3902.doi: 10.1109/TIT.2014.2317785. |
[20] |
C. Li, Q. Yue and F. Li, Weight distributions of cyclic codes with respect to pairwise coprime order elements, Finite Fields Appl., 28 (2014), 94-114.doi: 10.1016/j.ffa.2014.01.009. |
[21] |
S. Li, S. Hu, T. Feng and G. Ge, The weight distribution of a class of cyclic codes related to Hermitian forms graphs, IEEE Trans. Inf. Theory, 59 (2013), 3064-3067.doi: 10.1109/TIT.2013.2242957. |
[22] |
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley Publishing Inc., 1983. |
[23] |
J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes, IEEE Trans. Inf. Theory, 54 (2008), 5332-5344.doi: 10.1109/TIT.2008.2006424. |
[24] |
J. Luo, Y. Tang and H. Wang, Cyclic codes and sequences: the generalized Kasami case, IEEE Trans. Inf. Theory, 56 (2010), 2130-2142.doi: 10.1109/TIT.2010.2043783. |
[25] |
C. Ma, L. Zeng, Y. Liu, D. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.doi: 10.1109/TIT.2010.2090272. |
[26] |
G. McGuire, On three weights in cyclic codes with two zeros, Finite Fields Appl., 10 (2004), 97-104.doi: 10.1016/S1071-5797(03)00045-5. |
[27] |
G. Myerson, Period polynomials and Gauss sums for finite fields, Acta Arith., 39 (1981), 251-264. |
[28] |
G. Vega, Two-weight classes cyclic codes constructed as the direct sum of two one-weight cyclic codes, Finite Fields Appl., 14 (2008), 785-797.doi: 10.1016/j.ffa.2008.01.002. |
[29] |
G. Vega, The weight distribution of an extended class of reducible cyclic codes, IEEE Trans. Inf. Theory, 58 (2012), 4862-4869.doi: 10.1109/TIT.2012.2193376. |
[30] |
G. Vega and J. Wolfmann, New classes of 2-weight cyclic codes, Des. Codes Cryptogr., 42 (2007), 327-344.doi: 10.1007/s10623-007-9038-9. |
[31] |
B. Wang, C. Tang, Y. Qi, Y. Yang and M. Xu, The weight distributions of cyclic codes and elliptic curves, IEEE Trans. Inf. Theory, 58 (2012), 7253-7259.doi: 10.1109/TIT.2012.2210386. |
[32] |
L. Xia and J. Yang, Cyclotomic problem, Gauss sums and Legendre curve, Sci. China Math., 56 (2013), 1485-1508.doi: 10.1007/s11425-013-4653-6. |
[33] |
M. Xiong, The weight distributions of a class of cyclic codes, Finite Fields Appl., 18 (2012), 933-945.doi: 10.1016/j.ffa.2012.06.001. |
[34] |
M. Xiong, The weight distributions of a class of cyclic codes II, Des. Codes Cryptogr., 72 (2014), 511-528.doi: 10.1007/s10623-012-9785-0. |
[35] |
M. Xiong, The weight distributions of a class of cyclic codes III, Finite Fields Appl., 21 (2013), 84-96.doi: 10.1016/j.ffa.2013.01.004. |
[36] |
J. Yang, M. Xiong, C. Ding and J. Luo, Weight distribution of a class of cyclic codes with arbitrary number of zeros, IEEE Trans. Inf. Theory, 59 (2013), 5985-5993.doi: 10.1109/TIT.2013.2266731. |
[37] |
J. Yuan, C. Carlet and C. Ding, The weight distribution of a class of linear codes from perfect nonlinear functions, IEEE Trans. Inf. Theory, 52 (2006), 712-717.doi: 10.1109/TIT.2005.862125. |
[38] |
J. Yuan and C. Ding, Secret sharing schemes from three classes of linear codes, IEEE Trans. Inf. Theory, 52 (2006), 206-212.doi: 10.1109/TIT.2005.860412. |
[39] |
X. Zeng, L. Hu, W. Jiang, Q. Yue and X. Cao, The weight distribution of a class of p-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.doi: 10.1016/j.ffa.2009.12.001. |
[40] |
Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.doi: 10.1016/j.ffa.2013.08.005. |
[41] |
Z. Zhou, C. Ding, J. Luo and A. Zhang, A family of five-weight cyclic codes and their weight enumerators, IEEE Trans. Inf. Theory, 59 (2013), 6674-6682.doi: 10.1109/TIT.2013.2267722. |