August  2015, 9(3): 353-373. doi: 10.3934/amc.2015.9.353

An improved certificateless strong key-insulated signature scheme in the standard model

1. 

College of Computer and Information Engineering, Hohai University, 8 Focheng Xilu, Nanjing, Jiangsu 211100, China, China, China

Received  August 2014 Revised  March 2015 Published  July 2015

Exposure of secret keys may be the most devastating attack on a public key cryptographic scheme since such that security is entirely lost. The key-insulated security provides a promising approach to deal with this threat since it can effectively mitigate the damage caused by the secret key exposure. To eliminate the cumbersome certificate management in traditional PKI-supported key-insulated signature while overcoming the key escrow problem in identity-based key-insulated signature, two certificateless key-insulated signature schemes without random oracles have been proposed so far. However, both of them suffer from some security drawbacks and do not achieve existential unforgeability. In this paper, we propose a new certificateless strong key-insulated signature scheme that is proven secure in the standard model. Compared with the previous certificateless strong proxy signature scheme, the proposed scheme offers stronger security and enjoys higher computational efficiency and shorter public parameters.
Citation: Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353
References:
[1]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in Proc. ASIACRYPT 2003, (2003), 452.  doi: 10.1007/978-3-540-40061-5_29.  Google Scholar

[2]

J. Baek, R. Safavi-Naini and W. Susilo, Certificateless public key encryption without pairing,, in Proc. ISC 2005, (2005), 134.   Google Scholar

[3]

M. Bellare and A. Palacio, Protecting against key exposure: strongly key-insulated encryption with optimal threshold,, in Proc. AAECC 2006, (2006), 379.  doi: 10.1007/s00200-005-0183-y.  Google Scholar

[4]

K. Y. Choi, J. H. Park, J. Y. Hwang and D. H. Lee, Efficient certificateless signature schemes,, in Proc. ACNS 2007, (2007), 443.  doi: 10.1007/978-3-540-73489-5_5.  Google Scholar

[5]

A. W. Dent, B. Libert and K. G. Paterson, Certificateless encryption schemes strongly secure in the standard model,, in Proc. PKC 2008, (2008), 344.  doi: 10.1007/978-3-540-78440-1_20.  Google Scholar

[6]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public-key cryptosystems,, in Proc. EUROCRYPT 2002, (2002), 65.  doi: 10.1007/3-540-46035-7_5.  Google Scholar

[7]

Y. Dodis, J. Katz, S. Xu and M. Yung, Strong key-insulated signature schemes,, in Proc. PKC 2003, (2003), 130.  doi: 10.1007/3-540-36288-6_10.  Google Scholar

[8]

N. Gonzalez-Deleito, O. Markowitch and E. Dall'Olio, A new key-insulated signature scheme,, in Proc. ICICS 2004, (2004), 465.   Google Scholar

[9]

G. Hanaoka, Y. Hanaoka and H. Imai, Parallel key-insulated public key encryption,, in Proc. PKC 2006, (2006), 105.  doi: 10.1007/11745853_8.  Google Scholar

[10]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Unconditionally secure key insulated cryptosystems: models, bounds and constructions,, in Proc. ICICS 2002, (2002), 85.  doi: 10.1007/3-540-36178-2_5.  Google Scholar

[11]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Identity-based hierarchical strongly key-insulated encryption and its application,, in Proc. ASIACRYPT 2005, (2005), 495.  doi: 10.1007/11593447_27.  Google Scholar

[12]

D. He, B. Huang and J. Chen, New certificateless short signature scheme,, IET - Information Security, 7 (2013), 113.   Google Scholar

[13]

B. Libert and J. Quisquater, On constructing certificateless cryptosystems from identity based encryption,, in Proc. PKC 2006, (2006), 474.  doi: 10.1007/11745853_31.  Google Scholar

[14]

J. K. Liu, M. H. Au and W. Susilo, Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model,, in Proc. ASIACCS 2007, (2007), 302.   Google Scholar

[15]

J. K. Liu and D. S. Wong, Solutions to key exposure problem in ring signature,, Int. J. Network Sec., 6 (2008), 170.   Google Scholar

[16]

W. Qiu, Y. Zhou, B. Zhu, Y. Zheng, M. Wen and Z. Gong, Key-insulated encryption based key pre-distribution scheme for WSN,, in Proc. ISA 2009, (2009), 200.   Google Scholar

[17]

A. Shamir, Identity-based cryptosystems and signature schemes,, in Proc. CRYPTO 1984, (1984), 47.  doi: 10.1007/3-540-39568-7_5.  Google Scholar

[18]

Y. Sun and H. Li, Short-ciphertext and BDH-based CCA2 secure certificateless encryption,, Sci. China Inf. Sci., 53 (2010), 2005.  doi: 10.1007/s11432-010-4076-8.  Google Scholar

[19]

R. Tso, X. Huang and W. Susilo, Strongly secure certificateless short signatures,, J. Syst. Software, 85 (2012), 1409.   Google Scholar

[20]

R. Tso, X. Yi and X. Huang, Efficient and short certificateless signature,, in Proc. CANS 2008, (2008), 64.   Google Scholar

[21]

Z. Wan, X. Lai, J. Weng, S. Liu and X. Hong, Identity-based key-insulated proxy signature,, J. Electronics (China), 26 (2009), 853.   Google Scholar

[22]

Z. Wan, X. Lai, J. Weng, S. Liu, Y. Long and X. Hong, Certificateless key-insulated signature without random oracles,, J. Zhejiang Univ. Sci. A, 10 (2009), 1790.   Google Scholar

[23]

Z. Wan, X. Meng and X. Hong, Certificateless strong key-insulated signature without random oracles,, J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571.   Google Scholar

[24]

B. Waters, Efficient identity-based encryption without random oracles,, in Proc. EUROCRYPT 2005, (2005), 114.  doi: 10.1007/11426639_7.  Google Scholar

[25]

J. Weng, S. Liu, K. Chen and C. Ma, Identity-based key-insulated signature without random oracles,, in Proc. CIS 2006, (2006), 470.  doi: 10.1007/11941378_29.  Google Scholar

[26]

J. Weng, S. Liu, K. Chen, D. Zheng and W. Qiu, Identity-based Threshold key-insulated encryption without random oracles,, in Proc. CT-RSA 2008, (2008), 203.  doi: 10.1007/978-3-540-79263-5_13.  Google Scholar

[27]

W. Yang, F. Zhang and L. Shen, Efficient certificateless encryption withstanding attacks from malicious KGC without using random oracles,, Secur. Commun. Networks, 7 (2014), 445.   Google Scholar

[28]

D. H. Yum and P. J. Lee, Efficient key updating signature schemes based on IBS,, in Proc. Crypt. Coding 2003, (2003), 16.  doi: 10.1007/978-3-540-40974-8_14.  Google Scholar

[29]

F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bilinear parings and its applications,, in Proc. PKC 2004, (2004), 277.  doi: 10.1007/978-3-540-24632-9_20.  Google Scholar

[30]

Z. Zhang, D. Wong, J. Xu and D. Feng, Certificateless public-key signature: security model and efficient construction,, in Proc. ACNS 2006, (2006), 293.   Google Scholar

[31]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in Proc. ISPEC 2006, (2006), 226.   Google Scholar

show all references

References:
[1]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in Proc. ASIACRYPT 2003, (2003), 452.  doi: 10.1007/978-3-540-40061-5_29.  Google Scholar

[2]

J. Baek, R. Safavi-Naini and W. Susilo, Certificateless public key encryption without pairing,, in Proc. ISC 2005, (2005), 134.   Google Scholar

[3]

M. Bellare and A. Palacio, Protecting against key exposure: strongly key-insulated encryption with optimal threshold,, in Proc. AAECC 2006, (2006), 379.  doi: 10.1007/s00200-005-0183-y.  Google Scholar

[4]

K. Y. Choi, J. H. Park, J. Y. Hwang and D. H. Lee, Efficient certificateless signature schemes,, in Proc. ACNS 2007, (2007), 443.  doi: 10.1007/978-3-540-73489-5_5.  Google Scholar

[5]

A. W. Dent, B. Libert and K. G. Paterson, Certificateless encryption schemes strongly secure in the standard model,, in Proc. PKC 2008, (2008), 344.  doi: 10.1007/978-3-540-78440-1_20.  Google Scholar

[6]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public-key cryptosystems,, in Proc. EUROCRYPT 2002, (2002), 65.  doi: 10.1007/3-540-46035-7_5.  Google Scholar

[7]

Y. Dodis, J. Katz, S. Xu and M. Yung, Strong key-insulated signature schemes,, in Proc. PKC 2003, (2003), 130.  doi: 10.1007/3-540-36288-6_10.  Google Scholar

[8]

N. Gonzalez-Deleito, O. Markowitch and E. Dall'Olio, A new key-insulated signature scheme,, in Proc. ICICS 2004, (2004), 465.   Google Scholar

[9]

G. Hanaoka, Y. Hanaoka and H. Imai, Parallel key-insulated public key encryption,, in Proc. PKC 2006, (2006), 105.  doi: 10.1007/11745853_8.  Google Scholar

[10]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Unconditionally secure key insulated cryptosystems: models, bounds and constructions,, in Proc. ICICS 2002, (2002), 85.  doi: 10.1007/3-540-36178-2_5.  Google Scholar

[11]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Identity-based hierarchical strongly key-insulated encryption and its application,, in Proc. ASIACRYPT 2005, (2005), 495.  doi: 10.1007/11593447_27.  Google Scholar

[12]

D. He, B. Huang and J. Chen, New certificateless short signature scheme,, IET - Information Security, 7 (2013), 113.   Google Scholar

[13]

B. Libert and J. Quisquater, On constructing certificateless cryptosystems from identity based encryption,, in Proc. PKC 2006, (2006), 474.  doi: 10.1007/11745853_31.  Google Scholar

[14]

J. K. Liu, M. H. Au and W. Susilo, Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model,, in Proc. ASIACCS 2007, (2007), 302.   Google Scholar

[15]

J. K. Liu and D. S. Wong, Solutions to key exposure problem in ring signature,, Int. J. Network Sec., 6 (2008), 170.   Google Scholar

[16]

W. Qiu, Y. Zhou, B. Zhu, Y. Zheng, M. Wen and Z. Gong, Key-insulated encryption based key pre-distribution scheme for WSN,, in Proc. ISA 2009, (2009), 200.   Google Scholar

[17]

A. Shamir, Identity-based cryptosystems and signature schemes,, in Proc. CRYPTO 1984, (1984), 47.  doi: 10.1007/3-540-39568-7_5.  Google Scholar

[18]

Y. Sun and H. Li, Short-ciphertext and BDH-based CCA2 secure certificateless encryption,, Sci. China Inf. Sci., 53 (2010), 2005.  doi: 10.1007/s11432-010-4076-8.  Google Scholar

[19]

R. Tso, X. Huang and W. Susilo, Strongly secure certificateless short signatures,, J. Syst. Software, 85 (2012), 1409.   Google Scholar

[20]

R. Tso, X. Yi and X. Huang, Efficient and short certificateless signature,, in Proc. CANS 2008, (2008), 64.   Google Scholar

[21]

Z. Wan, X. Lai, J. Weng, S. Liu and X. Hong, Identity-based key-insulated proxy signature,, J. Electronics (China), 26 (2009), 853.   Google Scholar

[22]

Z. Wan, X. Lai, J. Weng, S. Liu, Y. Long and X. Hong, Certificateless key-insulated signature without random oracles,, J. Zhejiang Univ. Sci. A, 10 (2009), 1790.   Google Scholar

[23]

Z. Wan, X. Meng and X. Hong, Certificateless strong key-insulated signature without random oracles,, J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571.   Google Scholar

[24]

B. Waters, Efficient identity-based encryption without random oracles,, in Proc. EUROCRYPT 2005, (2005), 114.  doi: 10.1007/11426639_7.  Google Scholar

[25]

J. Weng, S. Liu, K. Chen and C. Ma, Identity-based key-insulated signature without random oracles,, in Proc. CIS 2006, (2006), 470.  doi: 10.1007/11941378_29.  Google Scholar

[26]

J. Weng, S. Liu, K. Chen, D. Zheng and W. Qiu, Identity-based Threshold key-insulated encryption without random oracles,, in Proc. CT-RSA 2008, (2008), 203.  doi: 10.1007/978-3-540-79263-5_13.  Google Scholar

[27]

W. Yang, F. Zhang and L. Shen, Efficient certificateless encryption withstanding attacks from malicious KGC without using random oracles,, Secur. Commun. Networks, 7 (2014), 445.   Google Scholar

[28]

D. H. Yum and P. J. Lee, Efficient key updating signature schemes based on IBS,, in Proc. Crypt. Coding 2003, (2003), 16.  doi: 10.1007/978-3-540-40974-8_14.  Google Scholar

[29]

F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bilinear parings and its applications,, in Proc. PKC 2004, (2004), 277.  doi: 10.1007/978-3-540-24632-9_20.  Google Scholar

[30]

Z. Zhang, D. Wong, J. Xu and D. Feng, Certificateless public-key signature: security model and efficient construction,, in Proc. ACNS 2006, (2006), 293.   Google Scholar

[31]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in Proc. ISPEC 2006, (2006), 226.   Google Scholar

[1]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[4]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[5]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[9]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[10]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[11]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[12]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[13]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[16]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[17]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[18]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]