August  2015, 9(3): 353-373. doi: 10.3934/amc.2015.9.353

An improved certificateless strong key-insulated signature scheme in the standard model

1. 

College of Computer and Information Engineering, Hohai University, 8 Focheng Xilu, Nanjing, Jiangsu 211100, China, China, China

Received  August 2014 Revised  March 2015 Published  July 2015

Exposure of secret keys may be the most devastating attack on a public key cryptographic scheme since such that security is entirely lost. The key-insulated security provides a promising approach to deal with this threat since it can effectively mitigate the damage caused by the secret key exposure. To eliminate the cumbersome certificate management in traditional PKI-supported key-insulated signature while overcoming the key escrow problem in identity-based key-insulated signature, two certificateless key-insulated signature schemes without random oracles have been proposed so far. However, both of them suffer from some security drawbacks and do not achieve existential unforgeability. In this paper, we propose a new certificateless strong key-insulated signature scheme that is proven secure in the standard model. Compared with the previous certificateless strong proxy signature scheme, the proposed scheme offers stronger security and enjoys higher computational efficiency and shorter public parameters.
Citation: Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353
References:
[1]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in Proc. ASIACRYPT 2003, (2003), 452. doi: 10.1007/978-3-540-40061-5_29. Google Scholar

[2]

J. Baek, R. Safavi-Naini and W. Susilo, Certificateless public key encryption without pairing,, in Proc. ISC 2005, (2005), 134. Google Scholar

[3]

M. Bellare and A. Palacio, Protecting against key exposure: strongly key-insulated encryption with optimal threshold,, in Proc. AAECC 2006, (2006), 379. doi: 10.1007/s00200-005-0183-y. Google Scholar

[4]

K. Y. Choi, J. H. Park, J. Y. Hwang and D. H. Lee, Efficient certificateless signature schemes,, in Proc. ACNS 2007, (2007), 443. doi: 10.1007/978-3-540-73489-5_5. Google Scholar

[5]

A. W. Dent, B. Libert and K. G. Paterson, Certificateless encryption schemes strongly secure in the standard model,, in Proc. PKC 2008, (2008), 344. doi: 10.1007/978-3-540-78440-1_20. Google Scholar

[6]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public-key cryptosystems,, in Proc. EUROCRYPT 2002, (2002), 65. doi: 10.1007/3-540-46035-7_5. Google Scholar

[7]

Y. Dodis, J. Katz, S. Xu and M. Yung, Strong key-insulated signature schemes,, in Proc. PKC 2003, (2003), 130. doi: 10.1007/3-540-36288-6_10. Google Scholar

[8]

N. Gonzalez-Deleito, O. Markowitch and E. Dall'Olio, A new key-insulated signature scheme,, in Proc. ICICS 2004, (2004), 465. Google Scholar

[9]

G. Hanaoka, Y. Hanaoka and H. Imai, Parallel key-insulated public key encryption,, in Proc. PKC 2006, (2006), 105. doi: 10.1007/11745853_8. Google Scholar

[10]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Unconditionally secure key insulated cryptosystems: models, bounds and constructions,, in Proc. ICICS 2002, (2002), 85. doi: 10.1007/3-540-36178-2_5. Google Scholar

[11]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Identity-based hierarchical strongly key-insulated encryption and its application,, in Proc. ASIACRYPT 2005, (2005), 495. doi: 10.1007/11593447_27. Google Scholar

[12]

D. He, B. Huang and J. Chen, New certificateless short signature scheme,, IET - Information Security, 7 (2013), 113. Google Scholar

[13]

B. Libert and J. Quisquater, On constructing certificateless cryptosystems from identity based encryption,, in Proc. PKC 2006, (2006), 474. doi: 10.1007/11745853_31. Google Scholar

[14]

J. K. Liu, M. H. Au and W. Susilo, Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model,, in Proc. ASIACCS 2007, (2007), 302. Google Scholar

[15]

J. K. Liu and D. S. Wong, Solutions to key exposure problem in ring signature,, Int. J. Network Sec., 6 (2008), 170. Google Scholar

[16]

W. Qiu, Y. Zhou, B. Zhu, Y. Zheng, M. Wen and Z. Gong, Key-insulated encryption based key pre-distribution scheme for WSN,, in Proc. ISA 2009, (2009), 200. Google Scholar

[17]

A. Shamir, Identity-based cryptosystems and signature schemes,, in Proc. CRYPTO 1984, (1984), 47. doi: 10.1007/3-540-39568-7_5. Google Scholar

[18]

Y. Sun and H. Li, Short-ciphertext and BDH-based CCA2 secure certificateless encryption,, Sci. China Inf. Sci., 53 (2010), 2005. doi: 10.1007/s11432-010-4076-8. Google Scholar

[19]

R. Tso, X. Huang and W. Susilo, Strongly secure certificateless short signatures,, J. Syst. Software, 85 (2012), 1409. Google Scholar

[20]

R. Tso, X. Yi and X. Huang, Efficient and short certificateless signature,, in Proc. CANS 2008, (2008), 64. Google Scholar

[21]

Z. Wan, X. Lai, J. Weng, S. Liu and X. Hong, Identity-based key-insulated proxy signature,, J. Electronics (China), 26 (2009), 853. Google Scholar

[22]

Z. Wan, X. Lai, J. Weng, S. Liu, Y. Long and X. Hong, Certificateless key-insulated signature without random oracles,, J. Zhejiang Univ. Sci. A, 10 (2009), 1790. Google Scholar

[23]

Z. Wan, X. Meng and X. Hong, Certificateless strong key-insulated signature without random oracles,, J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571. Google Scholar

[24]

B. Waters, Efficient identity-based encryption without random oracles,, in Proc. EUROCRYPT 2005, (2005), 114. doi: 10.1007/11426639_7. Google Scholar

[25]

J. Weng, S. Liu, K. Chen and C. Ma, Identity-based key-insulated signature without random oracles,, in Proc. CIS 2006, (2006), 470. doi: 10.1007/11941378_29. Google Scholar

[26]

J. Weng, S. Liu, K. Chen, D. Zheng and W. Qiu, Identity-based Threshold key-insulated encryption without random oracles,, in Proc. CT-RSA 2008, (2008), 203. doi: 10.1007/978-3-540-79263-5_13. Google Scholar

[27]

W. Yang, F. Zhang and L. Shen, Efficient certificateless encryption withstanding attacks from malicious KGC without using random oracles,, Secur. Commun. Networks, 7 (2014), 445. Google Scholar

[28]

D. H. Yum and P. J. Lee, Efficient key updating signature schemes based on IBS,, in Proc. Crypt. Coding 2003, (2003), 16. doi: 10.1007/978-3-540-40974-8_14. Google Scholar

[29]

F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bilinear parings and its applications,, in Proc. PKC 2004, (2004), 277. doi: 10.1007/978-3-540-24632-9_20. Google Scholar

[30]

Z. Zhang, D. Wong, J. Xu and D. Feng, Certificateless public-key signature: security model and efficient construction,, in Proc. ACNS 2006, (2006), 293. Google Scholar

[31]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in Proc. ISPEC 2006, (2006), 226. Google Scholar

show all references

References:
[1]

S. S. Al-Riyami and K. G. Paterson, Certificateless public key cryptography,, in Proc. ASIACRYPT 2003, (2003), 452. doi: 10.1007/978-3-540-40061-5_29. Google Scholar

[2]

J. Baek, R. Safavi-Naini and W. Susilo, Certificateless public key encryption without pairing,, in Proc. ISC 2005, (2005), 134. Google Scholar

[3]

M. Bellare and A. Palacio, Protecting against key exposure: strongly key-insulated encryption with optimal threshold,, in Proc. AAECC 2006, (2006), 379. doi: 10.1007/s00200-005-0183-y. Google Scholar

[4]

K. Y. Choi, J. H. Park, J. Y. Hwang and D. H. Lee, Efficient certificateless signature schemes,, in Proc. ACNS 2007, (2007), 443. doi: 10.1007/978-3-540-73489-5_5. Google Scholar

[5]

A. W. Dent, B. Libert and K. G. Paterson, Certificateless encryption schemes strongly secure in the standard model,, in Proc. PKC 2008, (2008), 344. doi: 10.1007/978-3-540-78440-1_20. Google Scholar

[6]

Y. Dodis, J. Katz, S. Xu and M. Yung, Key-insulated public-key cryptosystems,, in Proc. EUROCRYPT 2002, (2002), 65. doi: 10.1007/3-540-46035-7_5. Google Scholar

[7]

Y. Dodis, J. Katz, S. Xu and M. Yung, Strong key-insulated signature schemes,, in Proc. PKC 2003, (2003), 130. doi: 10.1007/3-540-36288-6_10. Google Scholar

[8]

N. Gonzalez-Deleito, O. Markowitch and E. Dall'Olio, A new key-insulated signature scheme,, in Proc. ICICS 2004, (2004), 465. Google Scholar

[9]

G. Hanaoka, Y. Hanaoka and H. Imai, Parallel key-insulated public key encryption,, in Proc. PKC 2006, (2006), 105. doi: 10.1007/11745853_8. Google Scholar

[10]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Unconditionally secure key insulated cryptosystems: models, bounds and constructions,, in Proc. ICICS 2002, (2002), 85. doi: 10.1007/3-540-36178-2_5. Google Scholar

[11]

Y. Hanaoka, G. Hanaoka, J. Shikata and H. Imai, Identity-based hierarchical strongly key-insulated encryption and its application,, in Proc. ASIACRYPT 2005, (2005), 495. doi: 10.1007/11593447_27. Google Scholar

[12]

D. He, B. Huang and J. Chen, New certificateless short signature scheme,, IET - Information Security, 7 (2013), 113. Google Scholar

[13]

B. Libert and J. Quisquater, On constructing certificateless cryptosystems from identity based encryption,, in Proc. PKC 2006, (2006), 474. doi: 10.1007/11745853_31. Google Scholar

[14]

J. K. Liu, M. H. Au and W. Susilo, Self-generated-certificate public key cryptography and certificateless signature/encryption scheme in the standard model,, in Proc. ASIACCS 2007, (2007), 302. Google Scholar

[15]

J. K. Liu and D. S. Wong, Solutions to key exposure problem in ring signature,, Int. J. Network Sec., 6 (2008), 170. Google Scholar

[16]

W. Qiu, Y. Zhou, B. Zhu, Y. Zheng, M. Wen and Z. Gong, Key-insulated encryption based key pre-distribution scheme for WSN,, in Proc. ISA 2009, (2009), 200. Google Scholar

[17]

A. Shamir, Identity-based cryptosystems and signature schemes,, in Proc. CRYPTO 1984, (1984), 47. doi: 10.1007/3-540-39568-7_5. Google Scholar

[18]

Y. Sun and H. Li, Short-ciphertext and BDH-based CCA2 secure certificateless encryption,, Sci. China Inf. Sci., 53 (2010), 2005. doi: 10.1007/s11432-010-4076-8. Google Scholar

[19]

R. Tso, X. Huang and W. Susilo, Strongly secure certificateless short signatures,, J. Syst. Software, 85 (2012), 1409. Google Scholar

[20]

R. Tso, X. Yi and X. Huang, Efficient and short certificateless signature,, in Proc. CANS 2008, (2008), 64. Google Scholar

[21]

Z. Wan, X. Lai, J. Weng, S. Liu and X. Hong, Identity-based key-insulated proxy signature,, J. Electronics (China), 26 (2009), 853. Google Scholar

[22]

Z. Wan, X. Lai, J. Weng, S. Liu, Y. Long and X. Hong, Certificateless key-insulated signature without random oracles,, J. Zhejiang Univ. Sci. A, 10 (2009), 1790. Google Scholar

[23]

Z. Wan, X. Meng and X. Hong, Certificateless strong key-insulated signature without random oracles,, J. Shanghai Jiaotong Univ. (Sci), 16 (2011), 571. Google Scholar

[24]

B. Waters, Efficient identity-based encryption without random oracles,, in Proc. EUROCRYPT 2005, (2005), 114. doi: 10.1007/11426639_7. Google Scholar

[25]

J. Weng, S. Liu, K. Chen and C. Ma, Identity-based key-insulated signature without random oracles,, in Proc. CIS 2006, (2006), 470. doi: 10.1007/11941378_29. Google Scholar

[26]

J. Weng, S. Liu, K. Chen, D. Zheng and W. Qiu, Identity-based Threshold key-insulated encryption without random oracles,, in Proc. CT-RSA 2008, (2008), 203. doi: 10.1007/978-3-540-79263-5_13. Google Scholar

[27]

W. Yang, F. Zhang and L. Shen, Efficient certificateless encryption withstanding attacks from malicious KGC without using random oracles,, Secur. Commun. Networks, 7 (2014), 445. Google Scholar

[28]

D. H. Yum and P. J. Lee, Efficient key updating signature schemes based on IBS,, in Proc. Crypt. Coding 2003, (2003), 16. doi: 10.1007/978-3-540-40974-8_14. Google Scholar

[29]

F. Zhang, R. Safavi-Naini and W. Susilo, An efficient signature scheme from bilinear parings and its applications,, in Proc. PKC 2004, (2004), 277. doi: 10.1007/978-3-540-24632-9_20. Google Scholar

[30]

Z. Zhang, D. Wong, J. Xu and D. Feng, Certificateless public-key signature: security model and efficient construction,, in Proc. ACNS 2006, (2006), 293. Google Scholar

[31]

Y. Zhou, Z. Cao and Z. Chai, Identity based key insulated signature,, in Proc. ISPEC 2006, (2006), 226. Google Scholar

[1]

Mohamed Baouch, Juan Antonio López-Ramos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715-717. doi: 10.3934/amc.2017052

[2]

Yvo Desmedt, Niels Duif, Henk van Tilborg, Huaxiong Wang. Bounds and constructions for key distribution schemes. Advances in Mathematics of Communications, 2009, 3 (3) : 273-293. doi: 10.3934/amc.2009.3.273

[3]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[4]

Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145.

[5]

Gerhard Frey. Relations between arithmetic geometry and public key cryptography. Advances in Mathematics of Communications, 2010, 4 (2) : 281-305. doi: 10.3934/amc.2010.4.281

[6]

Rainer Steinwandt, Adriana Suárez Corona. Attribute-based group key establishment. Advances in Mathematics of Communications, 2010, 4 (3) : 381-398. doi: 10.3934/amc.2010.4.381

[7]

Gérard Maze, Chris Monico, Joachim Rosenthal. Public key cryptography based on semigroup actions. Advances in Mathematics of Communications, 2007, 1 (4) : 489-507. doi: 10.3934/amc.2007.1.489

[8]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[9]

Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471

[10]

Rainer Steinwandt, Adriana Suárez Corona. Cryptanalysis of a 2-party key establishment based on a semigroup action problem. Advances in Mathematics of Communications, 2011, 5 (1) : 87-92. doi: 10.3934/amc.2011.5.87

[11]

Joan-Josep Climent, Juan Antonio López-Ramos. Public key protocols over the ring $E_{p}^{(m)}$. Advances in Mathematics of Communications, 2016, 10 (4) : 861-870. doi: 10.3934/amc.2016046

[12]

Jake Bouvrie, Boumediene Hamzi. Kernel methods for the approximation of some key quantities of nonlinear systems. Journal of Computational Dynamics, 2017, 4 (1&2) : 1-19. doi: 10.3934/jcd.2017001

[13]

Sikhar Patranabis, Debdeep Mukhopadhyay. Identity-based key aggregate cryptosystem from multilinear maps. Advances in Mathematics of Communications, 2019, 13 (4) : 759-778. doi: 10.3934/amc.2019044

[14]

Anton Stolbunov. Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 2010, 4 (2) : 215-235. doi: 10.3934/amc.2010.4.215

[15]

Xinwei Gao. Comparison analysis of Ding's RLWE-based key exchange protocol and NewHope variants. Advances in Mathematics of Communications, 2019, 13 (2) : 221-233. doi: 10.3934/amc.2019015

[16]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[17]

Jintai Ding, Joshua Deaton, Kurt Schmidt. Giophantus distinguishing attack is a low dimensional learning with errors problem. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020030

[18]

Jintai Ding, Joshua Deaton, Kurt Schmidt. Giophantus distinguishing attack is a low dimensional learning with errors problem. Advances in Mathematics of Communications, 2020, 14 (1) : 171-175. doi: 10.3934/amc.2020014

[19]

Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel. Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks & Heterogeneous Media, 2013, 8 (3) : 783-802. doi: 10.3934/nhm.2013.8.783

[20]

Patrice Bertail, Stéphan Clémençon, Jessica Tressou. A storage model with random release rate for modeling exposure to food contaminants. Mathematical Biosciences & Engineering, 2008, 5 (1) : 35-60. doi: 10.3934/mbe.2008.5.35

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]