February  2015, 9(1): 37-53. doi: 10.3934/amc.2015.9.37

Plaintext checkable encryption with designated checker

1. 

Department of Mathematics, St. Xavier's College, Kolkata, India

2. 

Department of Pure Mathematics, University of Calcutta, Kolkata, India

3. 

Department of Computer Science & Communication Engineering, Kyushu University, Fukuoka, Japan

Received  December 2013 Revised  September 2014 Published  February 2015

This paper introduces a new public-key primitive called designated plaintext checkable encryption (DPCE) in which given a ciphertext, a delegated checker can determine whether the ciphertext decrypts under the same public key to a plaintext chosen by himself. Motivated by various applications, two types of DPCE (of Type-I and II) are defined, depending upon whether the user delegates the plaintext checking right at his will to a delegated checker (Type-I) or the user is required to provide this plaintext checking right to a designated checker (Type-II). We propose several generic random-oracle and standard model constructions for DPCE of both the types based on arbitrary probabilistic or deterministic encryption schemes.
Citation: Angsuman Das, Avishek Adhikari, Kouichi Sakurai. Plaintext checkable encryption with designated checker. Advances in Mathematics of Communications, 2015, 9 (1) : 37-53. doi: 10.3934/amc.2015.9.37
References:
[1]

J. Baek, R. Safavi-Naini and W. Susilo, Public-key encryption with keyword search revisited,, in ICCSA 2008, (2008), 1249.   Google Scholar

[2]

D. Boneh, G. D. Crescenzo, R. Ostrovsky and G. Persiano, Public-key encryption with keyword search,, in EUROCRYPT 2004, (2004), 506.  doi: 10.1007/978-3-540-24676-3_30.  Google Scholar

[3]

E. Bresson, D. Catalano and D. Pointcheval, A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications,, in ASIACRYPT 2003, (2003), 37.  doi: 10.1007/978-3-540-40061-5_3.  Google Scholar

[4]

G. Fuchsbauer, A. Gouget and F. Laguillaumie, Plaintext-checkable encryption,, in CT-RSA 2012, (2012), 322.  doi: 10.1007/978-3-642-27954-6_21.  Google Scholar

[5]

S. Chow, M. Franklin and H. Zhang, Practical dual receiver encryption - soundness, complete non-malleability and applications,, in CT-RSA 2014, (2014), 85.  doi: 10.1007/978-3-319-04852-9_5.  Google Scholar

[6]

T. Diament, H. K. Lee, A. D. Keromytis and M. Yung, The efficient dual receiver cryptosystem and its applications,, Int. J. Network Secur., 12 (2011), 324.   Google Scholar

[7]

T. Fuhr and P. Paillier, Decryptable searchable encryption,, in ProvSec 2007, (2007), 228.   Google Scholar

[8]

L. Ibraimi, S. Nikova, P. Hartel and W. Jonker, Public-key encryption with delegated search,, in ACNS 2011, (2011), 532.   Google Scholar

[9]

A. Peter, M. Kronberg, W. Trei and S. Katzenbeisser, Additively homomorphic encryption with a double decryption mechanism, revisited,, in ISC 2012, (2012), 242.   Google Scholar

[10]

C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen ciphertext attack,, in 22nd Ann. ACM Symp. Theory Comput., (1990), 427.   Google Scholar

[11]

Q. Tang, Towards public key encryption scheme supporting equality test with fine-grained authorization,, in ACISP 2011, (2011), 389.   Google Scholar

[12]

G. Yang, C. H. Tan, Q, Huang and D. S. Wong, Probabilistic public key encryption with equality test,, in CT-RSA 2010, (2010), 119.  doi: 10.1007/978-3-642-11925-5_9.  Google Scholar

show all references

References:
[1]

J. Baek, R. Safavi-Naini and W. Susilo, Public-key encryption with keyword search revisited,, in ICCSA 2008, (2008), 1249.   Google Scholar

[2]

D. Boneh, G. D. Crescenzo, R. Ostrovsky and G. Persiano, Public-key encryption with keyword search,, in EUROCRYPT 2004, (2004), 506.  doi: 10.1007/978-3-540-24676-3_30.  Google Scholar

[3]

E. Bresson, D. Catalano and D. Pointcheval, A simple public-key cryptosystem with a double trapdoor decryption mechanism and its applications,, in ASIACRYPT 2003, (2003), 37.  doi: 10.1007/978-3-540-40061-5_3.  Google Scholar

[4]

G. Fuchsbauer, A. Gouget and F. Laguillaumie, Plaintext-checkable encryption,, in CT-RSA 2012, (2012), 322.  doi: 10.1007/978-3-642-27954-6_21.  Google Scholar

[5]

S. Chow, M. Franklin and H. Zhang, Practical dual receiver encryption - soundness, complete non-malleability and applications,, in CT-RSA 2014, (2014), 85.  doi: 10.1007/978-3-319-04852-9_5.  Google Scholar

[6]

T. Diament, H. K. Lee, A. D. Keromytis and M. Yung, The efficient dual receiver cryptosystem and its applications,, Int. J. Network Secur., 12 (2011), 324.   Google Scholar

[7]

T. Fuhr and P. Paillier, Decryptable searchable encryption,, in ProvSec 2007, (2007), 228.   Google Scholar

[8]

L. Ibraimi, S. Nikova, P. Hartel and W. Jonker, Public-key encryption with delegated search,, in ACNS 2011, (2011), 532.   Google Scholar

[9]

A. Peter, M. Kronberg, W. Trei and S. Katzenbeisser, Additively homomorphic encryption with a double decryption mechanism, revisited,, in ISC 2012, (2012), 242.   Google Scholar

[10]

C. Rackoff and D. Simon, Noninteractive zero-knowledge proof of knowledge and chosen ciphertext attack,, in 22nd Ann. ACM Symp. Theory Comput., (1990), 427.   Google Scholar

[11]

Q. Tang, Towards public key encryption scheme supporting equality test with fine-grained authorization,, in ACISP 2011, (2011), 389.   Google Scholar

[12]

G. Yang, C. H. Tan, Q, Huang and D. S. Wong, Probabilistic public key encryption with equality test,, in CT-RSA 2010, (2010), 119.  doi: 10.1007/978-3-642-11925-5_9.  Google Scholar

[1]

Fei Gao. Data encryption algorithm for e-commerce platform based on blockchain technology. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1457-1470. doi: 10.3934/dcdss.2019100

[2]

Aiwan Fan, Qiming Wang, Joyati Debnath. A high precision data encryption algorithm in wireless network mobile communication. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1327-1340. doi: 10.3934/dcdss.2019091

[3]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[4]

Hideyuki Suzuki, Shunji Ito, Kazuyuki Aihara. Double rotations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 515-532. doi: 10.3934/dcds.2005.13.515

[5]

Arsen R. Dzhanoev, Alexander Loskutov, Hongjun Cao, Miguel A.F. Sanjuán. A new mechanism of the chaos suppression. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 275-284. doi: 10.3934/dcdsb.2007.7.275

[6]

Quan Wang, Huichao Wang. The dynamical mechanism of jets for AGN. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 943-957. doi: 10.3934/dcdsb.2016.21.943

[7]

Mohammad T. Manzari, Charles S. Peskin. Paradoxical waves and active mechanism in the cochlea. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4531-4552. doi: 10.3934/dcds.2016.36.4531

[8]

Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413

[9]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[10]

Michael Hutchings, Frank Morgan, Manuel Ritore and Antonio Ros. Proof of the double bubble conjecture. Electronic Research Announcements, 2000, 6: 45-49.

[11]

Joel Hass, Michael Hutchings and Roger Schlafly. The double bubble conjecture. Electronic Research Announcements, 1995, 1: 98-102.

[12]

Jeongsim Kim, Bara Kim. Stability of a cyclic polling system with an adaptive mechanism. Journal of Industrial & Management Optimization, 2015, 11 (3) : 763-777. doi: 10.3934/jimo.2015.11.763

[13]

Kimberly Fessel, Mark H. Holmes. A model for the nonlinear mechanism responsible for cochlear amplification. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1357-1373. doi: 10.3934/mbe.2014.11.1357

[14]

Benjamin Steinberg, Yuqing Wang, Huaxiong Huang, Robert M. Miura. Spatial Buffering Mechanism: Mathematical Model and Computer Simulations. Mathematical Biosciences & Engineering, 2005, 2 (4) : 675-702. doi: 10.3934/mbe.2005.2.675

[15]

Magali Tournus, Aurélie Edwards, Nicolas Seguin, Benoît Perthame. Analysis of a simplified model of the urine concentration mechanism. Networks & Heterogeneous Media, 2012, 7 (4) : 989-1018. doi: 10.3934/nhm.2012.7.989

[16]

Feimin Zhong, Wei Zeng, Zhongbao Zhou. Mechanism design in a supply chain with ambiguity in private information. Journal of Industrial & Management Optimization, 2020, 16 (1) : 261-287. doi: 10.3934/jimo.2018151

[17]

Henk Bruin, Gregory Clack. Inducing and unique ergodicity of double rotations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4133-4147. doi: 10.3934/dcds.2012.32.4133

[18]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[19]

Blanca Climent-Ezquerra, Francisco Guillén-González. On a double penalized Smectic-A model. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4171-4182. doi: 10.3934/dcds.2012.32.4171

[20]

Merab Svanadze. On the theory of viscoelasticity for materials with double porosity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2335-2352. doi: 10.3934/dcdsb.2014.19.2335

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]