August  2015, 9(3): 375-390. doi: 10.3934/amc.2015.9.375

Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence

1. 

School of Mathemetics & Computation Science, Anqing Normal University, Anqing, Anhui 246133, China

2. 

Department of Mathematic and Statistics, Centtal China Normal University, Wuhan, Hubei 430079, China

3. 

Department of Mathematic Sciences, Yangzhou University, Yangzhou, Jiangsu 225002, China, China

Received  September 2014 Published  July 2015

Let $p$ be an odd prime, $n=2m$, and $n/\gcd(k,n)$ be odd. In this paper, we study the cross correlation between a $p$-ary $m$-sequence $(s_{t})$ of period $p^{n}-1$ and its decimated sequence $(s_{dt})$ where $d$ satisfies $d(p^k+1)\equiv p^m+1 \pmod {p^n-1}$. Our results show that the cross-correlation function is six-valued and the distribution of the cross correlation is also completely determined.
Citation: Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375
References:
[1]

A. W. Bluher, On $x^{q+1}+ax+b$,, Finite Fields Appl., 10 (2004), 285.  doi: 10.1016/j.ffa.2003.08.004.  Google Scholar

[2]

W. Chen, J. Luo and Y. Tang, Exponential sums from half quadratic forms and its applications,, in Proc. ISIT'14, (2014), 3145.   Google Scholar

[3]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a ternary m-sequence of period $3^{4k+2}-1$ and its decimated sequence by $(3^{2k+1}+1)^{2}$ over 8,, in Proc. ISIT'10, (2010), 1268.   Google Scholar

[4]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^m+1)^2}{2(p+1)}$,, IEEE Trans. Inf. Theory, 58 (2012), 1873.  doi: 10.1109/TIT.2011.2177573.  Google Scholar

[5]

H. Dobbertin, P. Felke and T. Helleseth, Niho type cross correlation functions via Dickson polynomials and Kloosterman sums,, IEEE Trans. Inf. Theory, 52 (2006), 613.  doi: 10.1109/TIT.2005.862094.  Google Scholar

[6]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence,, Discrete Math., 16 (1976), 209.   Google Scholar

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley, (1983).   Google Scholar

[8]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[9]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function,, IEEE Trans. Inf. Theory, 54 (2008), 5345.  doi: 10.1109/TIT.2008.2006394.  Google Scholar

[10]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation,, in Proc. IWSDA'11, (2011), 44.   Google Scholar

[11]

J, Luo, Y. Tang and H. Wang, Exponential sums, cyclic codes and sequences: the odd characteristic Kasami case,, preprint, ().   Google Scholar

[12]

G. J. Ness, T. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation,, IEEE Trans. Inf. Theory, 52 (2006), 2241.  doi: 10.1109/TIT.2006.872857.  Google Scholar

[13]

E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$,, IEEE Trans. Inf. Theory, 54 (2008), 3140.  doi: 10.1109/TIT.2008.924694.  Google Scholar

[14]

Y. Sun, Z. Wang, H. Li and T. Yan, The cross-correlation distribution of a $p$-ary m-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^k+1)^2}{2(p^e+1)}$,, Adv. Math. Commun., 7 (2013), 409.  doi: 10.3934/amc.2013.7.409.  Google Scholar

[15]

Y. Xia, C. Li, X. Zeng and T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences,, IEEE Trans. Inf. Theory, 60 (2014), 7368.  doi: 10.1109/TIT.2014.2350775.  Google Scholar

show all references

References:
[1]

A. W. Bluher, On $x^{q+1}+ax+b$,, Finite Fields Appl., 10 (2004), 285.  doi: 10.1016/j.ffa.2003.08.004.  Google Scholar

[2]

W. Chen, J. Luo and Y. Tang, Exponential sums from half quadratic forms and its applications,, in Proc. ISIT'14, (2014), 3145.   Google Scholar

[3]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a ternary m-sequence of period $3^{4k+2}-1$ and its decimated sequence by $(3^{2k+1}+1)^{2}$ over 8,, in Proc. ISIT'10, (2010), 1268.   Google Scholar

[4]

S. T. Choi, J. S. No and H. Chung, On the cross-correlation of a $p$-ary m-sequence of period $p^{2m}-1$ and its decimated sequence by $\frac{(p^m+1)^2}{2(p+1)}$,, IEEE Trans. Inf. Theory, 58 (2012), 1873.  doi: 10.1109/TIT.2011.2177573.  Google Scholar

[5]

H. Dobbertin, P. Felke and T. Helleseth, Niho type cross correlation functions via Dickson polynomials and Kloosterman sums,, IEEE Trans. Inf. Theory, 52 (2006), 613.  doi: 10.1109/TIT.2005.862094.  Google Scholar

[6]

T. Helleseth, Some results about the cross-correlation function between two maximal-linear sequence,, Discrete Math., 16 (1976), 209.   Google Scholar

[7]

R. Lidl and H. Niederreiter, Finite Fields,, Addison-Wesley, (1983).   Google Scholar

[8]

J. Luo and K. Feng, On the weight distribution of two classes of cyclic codes,, IEEE Trans. Inf. Theory, 54 (2008), 5332.  doi: 10.1109/TIT.2008.2006424.  Google Scholar

[9]

J. Luo and K. Feng, Cyclic codes and sequences from generalized Coulter-Matthews function,, IEEE Trans. Inf. Theory, 54 (2008), 5345.  doi: 10.1109/TIT.2008.2006394.  Google Scholar

[10]

J. Luo, T. Helleseth and A. Kholosha, Two nonbinary sequences with six-valued cross correlation,, in Proc. IWSDA'11, (2011), 44.   Google Scholar

[11]

J, Luo, Y. Tang and H. Wang, Exponential sums, cyclic codes and sequences: the odd characteristic Kasami case,, preprint, ().   Google Scholar

[12]

G. J. Ness, T. Helleseth and A. Kholosha, On the correlation distribution of the Coulter-Matthews decimation,, IEEE Trans. Inf. Theory, 52 (2006), 2241.  doi: 10.1109/TIT.2006.872857.  Google Scholar

[13]

E. Y. Seo, Y. S. Kim, J. S. No and D. J. Shin, Cross-correlation distribution of p-ary m-sequence of period $p^{4k}-1$ and its decimated sequences by $(\frac{p^{2k}+1}{2})^{2}$,, IEEE Trans. Inf. Theory, 54 (2008), 3140.  doi: 10.1109/TIT.2008.924694.  Google Scholar

[14]

Y. Sun, Z. Wang, H. Li and T. Yan, The cross-correlation distribution of a $p$-ary m-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^k+1)^2}{2(p^e+1)}$,, Adv. Math. Commun., 7 (2013), 409.  doi: 10.3934/amc.2013.7.409.  Google Scholar

[15]

Y. Xia, C. Li, X. Zeng and T. Helleseth, Some results on cross-correlation distribution between a $p$-ary $m$-sequence and its decimated sequences,, IEEE Trans. Inf. Theory, 60 (2014), 7368.  doi: 10.1109/TIT.2014.2350775.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 0.734

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (1)

[Back to Top]