Citation: |
[1] |
SAGE open source mathematics software system, http://www.sagemath.org/. |
[2] |
J.-C. Belfiore and F. Oggier, Lattice code design for the rayleigh fading wiretap channel, IEEE International Conference on Communications, (2011), 1-5.doi: 10.1109/iccw.2011.5963544. |
[3] |
J.-C. Belfiore and F. Oggier, An error probability approach to mimo wiretap channels, IEEE Trans. on Comm., 61 (2013), 3396-3403.doi: 10.1109/TCOMM.2013.061913.120278. |
[4] |
J.-C. Belfiore and F. Oggier, Secrecy gain: A wiretap lattice code design, IEEE International Symposium on Information Theory and its Applications, (2010), 174-178.doi: 10.1109/ISITA.2010.5650095. |
[5] |
J.-C. Belfiore and P. Solé, Unimodular lattices for the gaussian wiretap channel, IEEE Information Theory Workshop, (2010), 1-5.doi: 10.1109/CIG.2010.5592923. |
[6] |
J. Ducoat and F. Oggier, An analysis of small dimensional fading wiretap lattice codes, IEEE International Symposium on Information Theory, (2014), 966-970.doi: 10.1109/ISIT.2014.6874976. |
[7] |
A.-M. Ernvall-Hytönen and C. Hollanti, On the Eavesdropper's Correct Decision in Gaussian and Fading Wiretap Channels Using Lattice Codes, IEEE Information Theory Workshop, 2011. |
[8] |
C. Hollanti and E. Viterbo, Analysis on Wiretap Lattice Codes and Probability Bounds from Dedekind Zeta Functions, IEEE International Congress on Ultra-Modern Telecommunications and Control Systems and Workshops, 2011. |
[9] |
C. Hollanti, E. Viterbo and D. Karpuk, Nonasymptotic probability bounds for fading channels exploiting Dedekind zeta functions, preprint, arXiv:1303.3475. |
[10] |
S. Lang, Algebraic Number Theory, Second edition. Graduate Texts in Mathematics, 110. Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-0853-2. |
[11] |
S. Leung-Yan-Cheong and M. Hellman, The Gaussian wire-tap channel, IEEE Trans. on Inf. Theory, 24 (1978), 451-456.doi: 10.1109/TIT.1978.1055917. |
[12] |
F. Oggier, P. Solé and J.-C. Belfiore, Lattice codes for the wiretap gaussian channel: Construction and analysis, Information Theory, IEEE Tran, pp (2015), p1, arXiv:1103.4086 (2013).doi: 10.1109/TIT.2015.2494594. |
[13] |
F. Oggier and E. Viterbo, Algebraic number theory and code design for rayleigh fading channels, Foundations and Trends in Communications and Information Theory, 1 (2004), 333-416.doi: 10.1561/0100000003. |
[14] |
S. Ong and F. Oggier, Wiretap lattice codes from number fields with no small norm elements, Designs, Codes, and Cryptography, 73 (2014), 425-440.doi: 10.1007/s10623-014-9935-7. |
[15] |
R. Vehkalahti and H.-F. Lu, An algebraic look into MAC-DMT of lattice space-time codes, IEEE International Symposium on Information Theory, (2011), 2831-2835.doi: 10.1109/ISIT.2011.6034091. |
[16] |
R. Vehkalahti and H.-F. Lu, Diversity-multiplexing gain tradeoff: A tool in algebra?, IEEE Information Theory Workshop, (2011), 135-139.doi: 10.1109/ITW.2011.6089362. |
[17] |
R. Vehkalahti, H.-F. Lu and L. Luzzi, Inverse Determinant Sums and Connections Between Fading Channel Information Theory and Algebra, IEEE Trans. on Inf. Theory, 59 (2013), 6060-6082.doi: 10.1109/TIT.2013.2266396. |
[18] |
R. Vehkalahti and L. Luzzi, Connecting DMT of division algebra space-time codes and point counting in lie groups, IEEE International Symposium on Information Theory, (2012), 3038-3042.doi: 10.1109/ISIT.2012.6284119. |
[19] |
A. Wyner, The wire-tap channel, Bell Syst. Tech. Journal, 54 (1975), 1355-1387.doi: 10.1002/j.1538-7305.1975.tb02040.x. |