\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An enumeration of the equivalence classes of self-dual matrix codes

Abstract Related Papers Cited by
  • As a result of their applications in network coding, space-time coding, and coding for criss-cross errors, matrix codes have garnered significant attention; in various contexts, these codes have also been termed rank-metric codes, space-time codes over finite fields, and array codes. We focus on characterizing matrix codes that are both efficient (have high rate) and effective at error correction (have high minimum rank-distance). It is well known that the inherent trade-off between dimension and minimum distance for a matrix code is reversed for its dual code; specifically, if a matrix code has high dimension and low minimum distance, then its dual code will have low dimension and high minimum distance. With an aim towards finding codes with a perfectly balanced trade-off, we study self-dual matrix codes. In this work, we develop a framework based on double cosets of the matrix-equivalence maps to provide a complete classification of the equivalence classes of self-dual matrix codes, and we employ this method to enumerate the equivalence classes of these codes for small parameters.
    Mathematics Subject Classification: Primary: 94B60, 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Barra and H. Gluesing-Luerssen, MacWilliams extension theorems and local-global property for codes over Frobenius rings, J. Pure Appl. Algebra, 219 (2015), 703-728.doi: 10.1016/j.jpaa.2014.04.026.

    [2]

    M. Blaum, P. G. Farrell and H. C. A. van Tilborg, Array codes, In V. Pless and W. C. Huffman, editors, Handbook of Coding Theory, volume 2, pages 1855-1910. Elselvier, 1998.

    [3]

    P. Delsarte, Bilinear forms over a finite field with applications to coding theory, Journal of Combinatorial Theory, A, 25 (1978), 226-241.doi: 10.1016/0097-3165(78)90015-8.

    [4]

    D. Dummit and R. Foote, Abstract Algebra, Wiley, 2004.

    [5]

    D. Grant and M. Varanasi, Duality theory for space-time codes over finite fields, Advances in Mathematics of Communications, 2 (2008), 35-54.doi: 10.3934/amc.2008.2.35.

    [6]

    D. Grant and M. Varanasi, The equivalence of space-time codes and codes defined over finite fields and Galois rings, Advances in Mathematics of Communications, 2 (2008), 131-145.doi: 10.3934/amc.2008.2.131.

    [7]

    L. C. Grove, Classical Groups and Geometrical Algebra, Graduate Studies in Mathematics, 39. American Mathematical Society, Providence, RI, 2002.

    [8]

    G. Janusz, Parametrization of self-dual codes by orthogonal matrices, Finite Fields and Their Applications, 13 (2007), 450-491.doi: 10.1016/j.ffa.2006.05.001.

    [9]

    R. Kötter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Transactions on Information Theory, 54 (2008), 3597-3591.doi: 10.1109/TIT.2008.926449.

    [10]

    F. J. MacWilliams, Combinatorial Problems of Elementary Group Theory, PhD thesis, Harvard University, Cambridge, Mass, 1962.

    [11]

    F. J. MacWilliams, Orthogonal matrices over finite fields, The American Mathematical Monthly, 76 (1969), 152-164.doi: 10.2307/2317262.

    [12]

    C. L. Mallows, V. S. Pless and N. J. A. Sloane, Self-dual codes over GF(3), SIAM Journal of Applied Mathematics, 31 (1976), 649-666.doi: 10.1137/0131058.

    [13]

    M. Marcus and N. Moyls, Linear transformations on algebras of matrices, Canad. J. Math, 11 (1959), 61-66.doi: 10.4153/CJM-1959-008-0.

    [14]

    K. Morrison, Equivalence and Duality for Rank-Metric and Matrix Codes, PhD thesis, University of Nebraska-Lincoln, Lincoln, NE, 2012.

    [15]

    K. Morrison, Equivalence for rank-metric and matrix codes and automorphism groups for Gabidulin codes, IEEE Transactions on Information Theory, 60 (2014), 7035-7046.doi: 10.1109/TIT.2014.2359198.

    [16]

    V. S. Pless, On the uniqueness of the Golay codes, Journal of Combinatorial Theory, 5 (1968), 215-228.doi: 10.1016/S0021-9800(68)80067-5.

    [17]

    V. S. Pless, Self-dual codes - Theme and variations, In S. Boztas and I. Shparlinski, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Lecture Notes in Computer Science, pages 13-21. Springer, 2001.doi: 10.1007/3-540-45624-4_2.

    [18]

    E. M. Rains and N. J. A. Sloane, Self-dual codes, In V. S. Pless and W. C. Huffman, editors, Handbook of Coding Theory, pages 177-294. Elselvier, 1998.

    [19]

    R. M. Roth, Maximum-rank array codes and their application to criss-cross error correction, IEEE Transactions on Information Theory, 37(2):328-336, Mar 1991.doi: 10.1109/18.75248.

    [20]

    D. Silva, F. R. Kschischang and R. Kötter, A rank-metric approach to error control in random network coding, IEEE Transactions on Information Theory, 54 (2008), 3951-3967.doi: 10.1109/TIT.2008.928291.

    [21]

    D. Taylor, The Geometry of the Classical Groups, Helderman, 1992.

    [22]

    C. Vinroot, A note on orthogonal similitudes groups, Linear and Multilinear Algebra, 54 (2006), 391-396.doi: 10.1080/03081080500209588.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(288) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return