Citation: |
[1] |
G. K. Bakshi and M. Raka, A class of constacyclic codes over a finite field, Finite Fields Appl., 18 (2012), 362-377.doi: 10.1016/j.ffa.2011.09.005. |
[2] |
G. K. Bakshi and M. Raka, Self-dual and self-orthogonal negacyclic codes of length $2p^n$ over a finite field, Finite Fields Appl., 19 (2013), 39-54.doi: 10.1016/j.ffa.2012.10.003. |
[3] |
T. Blackford, Negacyclic duadic codes, Finite Fields Appl., 14 (2008), 930-943.doi: 10.1016/j.ffa.2008.05.004. |
[4] |
H. Q. Dinh, Repeated-root constacyclic codes of length $2p^s$, Finite Fields Appl., 18 (2012), 133-143.doi: 10.1016/j.ffa.2011.07.003. |
[5] |
H. Q. Dinh, Structure of repeated-root constacyclic codes of length $3p^s$ and their duals, Discrete Mathematics, 313 (2013), 983-991.doi: 10.1016/j.disc.2013.01.024. |
[6] |
H. Q. Dinh, On repeated-root constacyclic codes of length $4p^s$, Asian-European J. Math., 6 (2013), 1350020 [25 pages].doi: 10.1142/S1793557113500204. |
[7] |
H. Q. Dinh and S. R. López-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50 (2004), 1728-1744.doi: 10.1109/TIT.2004.831789. |
[8] |
W. Cary Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.doi: 10.1017/CBO9780511807077. |
[9] |
Y. Jia, S. Ling and C. Xing, On self-dual cyclic codes over finite fields, IEEE Trans. Inform. Theory, 57 (2011), 2243-2251.doi: 10.1109/TIT.2010.2092415. |
[10] |
J. S. Leon and V. Pless, Self-dual codes over GF(5), Journal of Combinatorial Theory, Series A, 32 (1982), 178-194.doi: 10.1016/0097-3165(82)90019-X. |
[11] |
F. J. MacWilliams and N. J. A. Sloane, Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1977. |
[12] |
V. Pless, A classification of self-orthogonal codes over GF(2), Discrete Mathematics, 3 (1972), 209-246.doi: 10.1016/0012-365X(72)90034-9. |