November  2015, 9(4): 471-514. doi: 10.3934/amc.2015.9.471

FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes

1. 

Data & Network Security Lab, Department of Computer Engineering, Sharif University of Technology, Tehran, Iran, Iran

Received  March 2014 Revised  March 2015 Published  November 2015

This paper suggests a model and a definition for forward-secure authenticated key exchange (AKE) protocols, which can be satisfied without depending on the Diffie--Hellman assumption. The basic idea is to use key-evolving schemes (KES), where the long-term keys of the system get updated regularly and irreversibly. Protocols conforming to our model can be highly efficient, since they do not require the resource-intensive modular exponentiations of the Diffie--Hellman protocol. We also introduce a protocol, called FORSAKES, and prove rigorously that it is a forward-secure AKE protocol in our model. FORSAKES is a very efficient protocol, and can be implemented by merely using hash functions.
Citation: Mohammad Sadeq Dousti, Rasool Jalili. FORSAKES: A forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Advances in Mathematics of Communications, 2015, 9 (4) : 471-514. doi: 10.3934/amc.2015.9.471
References:
[1]

A. Banerjee, C. Peikert and A. Rosen, Pseudorandom functions and lattices,, in Advances in Cryptology-EUROCRYPT 2012, 7237 (2012), 719.  doi: 10.1007/978-3-642-29011-4_42.  Google Scholar

[2]

D. Basin, C. Cremers and S. Meier, Provably repairing the ISO/IEC 9798 standard for entity authentication,, in Principles of Security and Trust, 7215 (2012), 129.  doi: 10.1007/978-3-642-28641-4_8.  Google Scholar

[3]

M. Bellare, R. Canetti and H. Krawczyk, Keying hash functions for message authentication,, in Advances in Cryptology-CRYPTO '96, 1109 (1996), 1.  doi: 10.1007/3-540-68697-5_1.  Google Scholar

[4]

M. Bellare, R. Canetti and H. Krawczyk, A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract),, in Proceedings of the $30^{th}$ Annual ACM Symposium on Theory of Computing (STOC '98), (1998), 419.  doi: 10.1145/276698.276854.  Google Scholar

[5]

M. Bellare, D. Pointcheval and P. Rogaway, Authenticated key exchange secure against dictionary attacks,, in Advances in Cryptology-EUROCRYPT '00, 1807 (2000), 139.  doi: 10.1007/3-540-45539-6_11.  Google Scholar

[6]

M. Bellare and P. Rogaway, Entity authentication and key distribution,, in Advances in Cryptology-CRYPTO '93, 773 (1993), 232.  doi: 10.1007/3-540-48329-2_21.  Google Scholar

[7]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols,, in Proceedings of the $1^{st}$ Annual ACM Conference on Computer and Communications Security (CCS '93), (1993), 62.  doi: 10.1145/168588.168596.  Google Scholar

[8]

M. Bellare and P. Rogaway, Provably secure session key distribution: The three party case,, in Proceedings of the $27^{th}$ Annual ACM Symposium on Theory of Computing (STOC '95), (1995), 57.  doi: 10.1145/225058.225084.  Google Scholar

[9]

M. Bellare and P. Rogaway, The exact security of digital signatures-how to sign with RSA and Rabin,, in Advances in Cryptology-EUROCRYPT '96, 1070 (1996), 399.  doi: 10.1007/3-540-68339-9_34.  Google Scholar

[10]

R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung, Systematic design of two-party authentication protocols,, in Advances in Cryptology-CRYPTO '91, 576 (1992), 44.  doi: 10.1007/3-540-46766-1_3.  Google Scholar

[11]

A. Biryukov, J. Lano and B. Preneel, Cryptanalysis of the alleged SecurID hash function,, in Selected Areas in Cryptography (SAC 2003), 3006 (2004), 130.  doi: 10.1007/978-3-540-24654-1_10.  Google Scholar

[12]

A. Biryukov, J. Lano and B. Preneel, Recent attacks on alleged SecurID and their practical implications,, Computers & Security, 24 (2005), 364.  doi: 10.1016/j.cose.2005.04.006.  Google Scholar

[13]

S. Blake-Wilson, D. Johnson and A. Menezes, Key agreement protocols and their security analysis,, in Proceedings of the $6^{th}$ IMA International Conference on Cryptography and Coding (IMACC '97), 1355 (1997), 30.  doi: 10.1007/BFb0024447.  Google Scholar

[14]

S. Blake-Wilson and A. Menezes, Entity authentication and authenticated key transport protocols: Employing asymmetric techniques,, in Security Protocols, 1361 (2005), 137.  doi: 10.1007/BFb0028166.  Google Scholar

[15]

C. Boyd, Hidden assumptions in cryptographic protocols,, IEE Proceedings of Computers and Digital Techniques, 137 (1990), 433.  doi: 10.1049/ip-e.1990.0054.  Google Scholar

[16]

C. Boyd and A. Mathuria, Protocols for authentication and key establishment,, Springer, (2003).  doi: 10.1007/978-3-662-09527-0.  Google Scholar

[17]

C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi and S. C. Williams, Less is more: Relaxed yet composable security notions for key exchange,, International Journal of Information Security, 12 (2013), 267.  doi: 10.1007/s10207-013-0192-y.  Google Scholar

[18]

C. Brzuska, M. Fischlin, B. Warinschi and S. C. Williams, Composability of Bellare-Rogaway key exchange protocols,, in Proceedings of the $18^{th}$ ACM Conference on Computer and Communications Security (CCS 2011), (2011), 51.  doi: 10.1145/2046707.2046716.  Google Scholar

[19]

J. Camenisch, A. Lysyanskaya and G. Neven, Practical yet universally composable two-server password-authenticated secret sharing,, in Proceedings of the $19^{th}$ ACM Conference on Computer and Communications Security (CCS 2012), (2012), 525.  doi: 10.1145/2382196.2382252.  Google Scholar

[20]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols (extended abstract),, in Proceedings of the $42^{nd}$ Annual IEEE Symposium on Foundations of Computer Science (FOCS '01), (2001), 136.   Google Scholar

[21]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols,, Cryptology ePrint Archive, (2000).  doi: 10.1109/SFCS.2001.959888.  Google Scholar

[22]

R. Canetti, S. Halevi and J. Katz, A forward-secure public-key encryption scheme,, in Advances in Cryptology-Eurocrypt 2003, 2656 (2003), 255.  doi: 10.1007/3-540-39200-9_16.  Google Scholar

[23]

R. Canetti, S. Halevi and J. Katz, A forward-secure public-key encryption scheme,, Journal of Cryptology, 20 (2007), 265.  doi: 10.1007/s00145-006-0442-5.  Google Scholar

[24]

R. Canetti, S. Halevi, J. Katz, Y. Lindell and P. MacKenzie, Universally composable password-based key exchange,, in Advances in Cryptology-EUROCRYPT 2005, 3494 (2005), 404.  doi: 10.1007/11426639_24.  Google Scholar

[25]

R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels,, in Advances in Cryptology-EUROCRYPT '01, 2045 (2001), 453.  doi: 10.1007/3-540-44987-6_28.  Google Scholar

[26]

R. Canetti and H. Krawczyk, Universally composable notions of key exchange and secure channels (extended abstract),, in Advances in Cryptology-EUROCRYPT '02, 2332 (2002), 337.  doi: 10.1007/3-540-46035-7_22.  Google Scholar

[27]

T. Cao, E. Bertino and H. Lei, Security analysis of the SASI protocol,, IEEE Transactions on Dependable and Secure Computing, 6 (2009), 73.  doi: 10.1109/TDSC.2008.32.  Google Scholar

[28]

H.-Y. Chien, SASI: A new ultralightweight RFID authentication protocol providing strong authentication and strong integrity,, IEEE Transactions on Dependable and Secure Computing, 4 (2007), 337.  doi: 10.1109/TDSC.2007.70226.  Google Scholar

[29]

K.-K. R. Choo, Secure key establishment,, Springer, (2009).  doi: 10.1007/978-0-387-87969-7.  Google Scholar

[30]

K.-K. R. Choo, C. Boyd and Y. Hitchcock, Examining indistinguishability-based proof models for key establishment protocols,, in Advances in Cryptology-ASIACRYPT '05, 3788 (2005), 585.  doi: 10.1007/11593447_32.  Google Scholar

[31]

K.-K. R. Choo, C. Boyd, Y. Hitchcock and G. Maitland, On session identifiers in provably secure protocols: The Bellare-Rogaway three-party key distribution protocol revisited,, in Security in Communication Networks (SCN 2004), 3352 (2005), 351.  doi: 10.1007/978-3-540-30598-9_25.  Google Scholar

[32]

J. Clark and J. Jacob, On the security of recent protocols,, Information Processing Letters (IPL), 56 (1995), 151.  doi: 10.1016/0020-0190(95)00136-Z.  Google Scholar

[33]

J. Clark and J. Jacob, A survey of authentication protocol literature: Version 1.0, 1997,, Available from , ().   Google Scholar

[34]

S. Contini and Y. L. Yin, Fast software-based attacks on SecurID,, in Fast Software Encryption (FSE 2004), 3017 (2004), 454.  doi: 10.1007/978-3-540-25937-4_29.  Google Scholar

[35]

C. Cremers, Examining indistinguishability-based security models for key exchange protocols: The case of CK, CK-HMQV, and eCK,, in Proceedings of the $6^{th}$ ACM Symposium on Information, (2011), 80.  doi: 10.1145/1966913.1966925.  Google Scholar

[36]

C. J. Cremers, Session-state reveal is stronger than ephemeral key reveal: Attacking the NAXOS authenticated key exchange protocol,, in Proceedings of the $7^{th}$ International Conference on Applied Cryptography and Network Security (ACNS '09), 5536 (2009), 20.  doi: 10.1007/978-3-642-01957-9_2.  Google Scholar

[37]

D. E. Denning and G. M. Sacco, Timestamps in key distribution protocols,, Communications of the ACM, 24 (1981), 533.  doi: 10.1145/358722.358740.  Google Scholar

[38]

W. Diffie and M. E. Hellman, New directions in cryptography,, IEEE Transactions on Information Theory, IT-22 (1976), 644.  doi: 10.1109/TIT.1976.1055638.  Google Scholar

[39]

W. Diffie, P. C. Oorschot and M. J. Wiener, Authentication and authenticated key exchanges,, Designs, 2 (1992), 107.  doi: 10.1007/BF00124891.  Google Scholar

[40]

M. S. Dousti and R. Jalili, Efficient Statistical Zero-Knowledge Authentication Protocols for Smart Cards Secure Against Active & Concurrent Attacks,, Cryptology ePrint Archive, (2013).   Google Scholar

[41]

M. S. Dousti and R. Jalili, An efficient statistical zero-knowledge authentication protocol for smart cards,, International Journal of Computer Mathematics, ().  doi: 10.1080/00207160.2015.1011629.  Google Scholar

[42]

U. Feige, A. Fiat and A. Shamir, Zero-knowledge proofs of identity (extended abstract),, in Proceedings of the $19^{th}$ Annual ACM Symposium on Theory of Computing (STOC '87), (1987), 210.  doi: 10.1007/BF02351717.  Google Scholar

[43]

U. Feige, A. Fiat and A. Shamir, Zero-knowledge proofs of identity,, Journal of Cryptology, 1 (1988), 77.  doi: 10.1007/BF02351717.  Google Scholar

[44]

O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions,, Journal of the ACM (JACM), 33 (1986), 792.  doi: 10.1145/6490.6503.  Google Scholar

[45]

C. G. Günther, An identity-based key-exchange protocol,, in Advances in Cryptology-EUROCRYPT '89, (1989), 29.  doi: 10.1007/3-540-46885-4_5.  Google Scholar

[46]

D. Hofheinz, J. Müller-Quade and R. Steinwandt, Initiator-resilient universally composable key exchange,, in Proceedings of the $8^{th}$ European Symposium on Research in Computer Security (ESORICS 2003), 2908 (2003), 61.  doi: 10.1007/978-3-540-39650-5_4.  Google Scholar

[47]

J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols,, 1st edition, (2007).   Google Scholar

[48]

H. Krawczyk, HMQV: A high-performance secure Diffie-Hellman protocol (extended abstract),, in Advances in Cryptology-CRYPTO'05, 3621 (2005), 546.  doi: 10.1007/11535218_33.  Google Scholar

[49]

B. LaMacchia, K. Lauter and A. Mityagin, Stronger security of authenticated key exchange,, in Proceedings of the $1^{st}$ International Conference on Provable Security (ProvSec '07), 4784 (2007), 1.  doi: 10.1007/978-3-540-75670-5_1.  Google Scholar

[50]

L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, An efficient protocol for authenticated key agreement,, Designs, 28 (2003), 119.  doi: 10.1023/A:1022595222606.  Google Scholar

[51]

C. Lenzen, T. Locher, P. Sommer and R. Wattenhofer, Clock synchronization: Open problems in theory and practice,, in International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2010), 5901 (2010), 61.  doi: 10.1007/978-3-642-11266-9_5.  Google Scholar

[52]

A. Menezes, Another look at HMQV,, Journal of Mathematical Cryptology, 1 (2007), 47.  doi: 10.1515/JMC.2007.004.  Google Scholar

[53]

A. Menezes, M. Qu and S. Vanstone, Some new key agreement protocols providing implicit authentication,, in Presented at the Workshop on Selected Areas in Cryptography (SAC '95), (1995), 22.   Google Scholar

[54]

R. M. Needham and M. D. Schroeder, Using encryption for authentication in large networks of computers,, Communications of the ACM, 21 (1978), 993.  doi: 10.1145/359657.359659.  Google Scholar

[55]

D. Otway and O. Rees, Efficient and timely mutual authentication,, ACM SIGOPS Operating Systems Review, 21 (1987), 8.  doi: 10.1145/24592.24594.  Google Scholar

[56]

R. C.-W. Phan, Cryptanalysis of a new ultralightweight RFID authentication protocol-SASI,, IEEE Transactions on Dependable and Secure Computing, 6 (2009), 316.  doi: 10.1109/TDSC.2008.33.  Google Scholar

[57]

A. P. Sarr, P. Elbaz-Vincent and J.-C. Bajard, A new security model for authenticated key agreement,, in Proceedings of the $7^{th}$ International Conference on Security and Cryptography for Networks (SCN '10), 6280 (2010), 219.  doi: 10.1007/978-3-642-15317-4_15.  Google Scholar

[58]

V. Shoup, On formal models for secure key exchange,, Technical report, (1999).   Google Scholar

[59]

V. Shoup and A. Rubin, Session key distribution using smart cards,, in Advances in Cryptology-EUROCRYPT '96, 1070 (2001), 321.  doi: 10.1007/3-540-68339-9_28.  Google Scholar

[60]

H.-M. Sun, W.-C. Ting and K.-H. Wang, On the security of Chien's ultralightweight RFID authentication protocol,, IEEE Transactions on Dependable and Secure Computing, 8 (2011), 315.  doi: 10.1109/TDSC.2009.26.  Google Scholar

[61]

I. Wiener, Sample SecurID token emulator with token secret import, 2000,, Available from , (): 2000.   Google Scholar

[62]

K. Yoneyama and Y. Zhao, Taxonomical security consideration of authenticated key exchange resilient to intermediate computation leakage,, in Proceedings of the $5^{th}$ International Conference on Provable Security (ProvSec 2011), 6980 (2011), 348.  doi: 10.1007/978-3-642-24316-5_25.  Google Scholar

show all references

References:
[1]

A. Banerjee, C. Peikert and A. Rosen, Pseudorandom functions and lattices,, in Advances in Cryptology-EUROCRYPT 2012, 7237 (2012), 719.  doi: 10.1007/978-3-642-29011-4_42.  Google Scholar

[2]

D. Basin, C. Cremers and S. Meier, Provably repairing the ISO/IEC 9798 standard for entity authentication,, in Principles of Security and Trust, 7215 (2012), 129.  doi: 10.1007/978-3-642-28641-4_8.  Google Scholar

[3]

M. Bellare, R. Canetti and H. Krawczyk, Keying hash functions for message authentication,, in Advances in Cryptology-CRYPTO '96, 1109 (1996), 1.  doi: 10.1007/3-540-68697-5_1.  Google Scholar

[4]

M. Bellare, R. Canetti and H. Krawczyk, A modular approach to the design and analysis of authentication and key exchange protocols (extended abstract),, in Proceedings of the $30^{th}$ Annual ACM Symposium on Theory of Computing (STOC '98), (1998), 419.  doi: 10.1145/276698.276854.  Google Scholar

[5]

M. Bellare, D. Pointcheval and P. Rogaway, Authenticated key exchange secure against dictionary attacks,, in Advances in Cryptology-EUROCRYPT '00, 1807 (2000), 139.  doi: 10.1007/3-540-45539-6_11.  Google Scholar

[6]

M. Bellare and P. Rogaway, Entity authentication and key distribution,, in Advances in Cryptology-CRYPTO '93, 773 (1993), 232.  doi: 10.1007/3-540-48329-2_21.  Google Scholar

[7]

M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols,, in Proceedings of the $1^{st}$ Annual ACM Conference on Computer and Communications Security (CCS '93), (1993), 62.  doi: 10.1145/168588.168596.  Google Scholar

[8]

M. Bellare and P. Rogaway, Provably secure session key distribution: The three party case,, in Proceedings of the $27^{th}$ Annual ACM Symposium on Theory of Computing (STOC '95), (1995), 57.  doi: 10.1145/225058.225084.  Google Scholar

[9]

M. Bellare and P. Rogaway, The exact security of digital signatures-how to sign with RSA and Rabin,, in Advances in Cryptology-EUROCRYPT '96, 1070 (1996), 399.  doi: 10.1007/3-540-68339-9_34.  Google Scholar

[10]

R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung, Systematic design of two-party authentication protocols,, in Advances in Cryptology-CRYPTO '91, 576 (1992), 44.  doi: 10.1007/3-540-46766-1_3.  Google Scholar

[11]

A. Biryukov, J. Lano and B. Preneel, Cryptanalysis of the alleged SecurID hash function,, in Selected Areas in Cryptography (SAC 2003), 3006 (2004), 130.  doi: 10.1007/978-3-540-24654-1_10.  Google Scholar

[12]

A. Biryukov, J. Lano and B. Preneel, Recent attacks on alleged SecurID and their practical implications,, Computers & Security, 24 (2005), 364.  doi: 10.1016/j.cose.2005.04.006.  Google Scholar

[13]

S. Blake-Wilson, D. Johnson and A. Menezes, Key agreement protocols and their security analysis,, in Proceedings of the $6^{th}$ IMA International Conference on Cryptography and Coding (IMACC '97), 1355 (1997), 30.  doi: 10.1007/BFb0024447.  Google Scholar

[14]

S. Blake-Wilson and A. Menezes, Entity authentication and authenticated key transport protocols: Employing asymmetric techniques,, in Security Protocols, 1361 (2005), 137.  doi: 10.1007/BFb0028166.  Google Scholar

[15]

C. Boyd, Hidden assumptions in cryptographic protocols,, IEE Proceedings of Computers and Digital Techniques, 137 (1990), 433.  doi: 10.1049/ip-e.1990.0054.  Google Scholar

[16]

C. Boyd and A. Mathuria, Protocols for authentication and key establishment,, Springer, (2003).  doi: 10.1007/978-3-662-09527-0.  Google Scholar

[17]

C. Brzuska, M. Fischlin, N. P. Smart, B. Warinschi and S. C. Williams, Less is more: Relaxed yet composable security notions for key exchange,, International Journal of Information Security, 12 (2013), 267.  doi: 10.1007/s10207-013-0192-y.  Google Scholar

[18]

C. Brzuska, M. Fischlin, B. Warinschi and S. C. Williams, Composability of Bellare-Rogaway key exchange protocols,, in Proceedings of the $18^{th}$ ACM Conference on Computer and Communications Security (CCS 2011), (2011), 51.  doi: 10.1145/2046707.2046716.  Google Scholar

[19]

J. Camenisch, A. Lysyanskaya and G. Neven, Practical yet universally composable two-server password-authenticated secret sharing,, in Proceedings of the $19^{th}$ ACM Conference on Computer and Communications Security (CCS 2012), (2012), 525.  doi: 10.1145/2382196.2382252.  Google Scholar

[20]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols (extended abstract),, in Proceedings of the $42^{nd}$ Annual IEEE Symposium on Foundations of Computer Science (FOCS '01), (2001), 136.   Google Scholar

[21]

R. Canetti, Universally composable security: A new paradigm for cryptographic protocols,, Cryptology ePrint Archive, (2000).  doi: 10.1109/SFCS.2001.959888.  Google Scholar

[22]

R. Canetti, S. Halevi and J. Katz, A forward-secure public-key encryption scheme,, in Advances in Cryptology-Eurocrypt 2003, 2656 (2003), 255.  doi: 10.1007/3-540-39200-9_16.  Google Scholar

[23]

R. Canetti, S. Halevi and J. Katz, A forward-secure public-key encryption scheme,, Journal of Cryptology, 20 (2007), 265.  doi: 10.1007/s00145-006-0442-5.  Google Scholar

[24]

R. Canetti, S. Halevi, J. Katz, Y. Lindell and P. MacKenzie, Universally composable password-based key exchange,, in Advances in Cryptology-EUROCRYPT 2005, 3494 (2005), 404.  doi: 10.1007/11426639_24.  Google Scholar

[25]

R. Canetti and H. Krawczyk, Analysis of key-exchange protocols and their use for building secure channels,, in Advances in Cryptology-EUROCRYPT '01, 2045 (2001), 453.  doi: 10.1007/3-540-44987-6_28.  Google Scholar

[26]

R. Canetti and H. Krawczyk, Universally composable notions of key exchange and secure channels (extended abstract),, in Advances in Cryptology-EUROCRYPT '02, 2332 (2002), 337.  doi: 10.1007/3-540-46035-7_22.  Google Scholar

[27]

T. Cao, E. Bertino and H. Lei, Security analysis of the SASI protocol,, IEEE Transactions on Dependable and Secure Computing, 6 (2009), 73.  doi: 10.1109/TDSC.2008.32.  Google Scholar

[28]

H.-Y. Chien, SASI: A new ultralightweight RFID authentication protocol providing strong authentication and strong integrity,, IEEE Transactions on Dependable and Secure Computing, 4 (2007), 337.  doi: 10.1109/TDSC.2007.70226.  Google Scholar

[29]

K.-K. R. Choo, Secure key establishment,, Springer, (2009).  doi: 10.1007/978-0-387-87969-7.  Google Scholar

[30]

K.-K. R. Choo, C. Boyd and Y. Hitchcock, Examining indistinguishability-based proof models for key establishment protocols,, in Advances in Cryptology-ASIACRYPT '05, 3788 (2005), 585.  doi: 10.1007/11593447_32.  Google Scholar

[31]

K.-K. R. Choo, C. Boyd, Y. Hitchcock and G. Maitland, On session identifiers in provably secure protocols: The Bellare-Rogaway three-party key distribution protocol revisited,, in Security in Communication Networks (SCN 2004), 3352 (2005), 351.  doi: 10.1007/978-3-540-30598-9_25.  Google Scholar

[32]

J. Clark and J. Jacob, On the security of recent protocols,, Information Processing Letters (IPL), 56 (1995), 151.  doi: 10.1016/0020-0190(95)00136-Z.  Google Scholar

[33]

J. Clark and J. Jacob, A survey of authentication protocol literature: Version 1.0, 1997,, Available from , ().   Google Scholar

[34]

S. Contini and Y. L. Yin, Fast software-based attacks on SecurID,, in Fast Software Encryption (FSE 2004), 3017 (2004), 454.  doi: 10.1007/978-3-540-25937-4_29.  Google Scholar

[35]

C. Cremers, Examining indistinguishability-based security models for key exchange protocols: The case of CK, CK-HMQV, and eCK,, in Proceedings of the $6^{th}$ ACM Symposium on Information, (2011), 80.  doi: 10.1145/1966913.1966925.  Google Scholar

[36]

C. J. Cremers, Session-state reveal is stronger than ephemeral key reveal: Attacking the NAXOS authenticated key exchange protocol,, in Proceedings of the $7^{th}$ International Conference on Applied Cryptography and Network Security (ACNS '09), 5536 (2009), 20.  doi: 10.1007/978-3-642-01957-9_2.  Google Scholar

[37]

D. E. Denning and G. M. Sacco, Timestamps in key distribution protocols,, Communications of the ACM, 24 (1981), 533.  doi: 10.1145/358722.358740.  Google Scholar

[38]

W. Diffie and M. E. Hellman, New directions in cryptography,, IEEE Transactions on Information Theory, IT-22 (1976), 644.  doi: 10.1109/TIT.1976.1055638.  Google Scholar

[39]

W. Diffie, P. C. Oorschot and M. J. Wiener, Authentication and authenticated key exchanges,, Designs, 2 (1992), 107.  doi: 10.1007/BF00124891.  Google Scholar

[40]

M. S. Dousti and R. Jalili, Efficient Statistical Zero-Knowledge Authentication Protocols for Smart Cards Secure Against Active & Concurrent Attacks,, Cryptology ePrint Archive, (2013).   Google Scholar

[41]

M. S. Dousti and R. Jalili, An efficient statistical zero-knowledge authentication protocol for smart cards,, International Journal of Computer Mathematics, ().  doi: 10.1080/00207160.2015.1011629.  Google Scholar

[42]

U. Feige, A. Fiat and A. Shamir, Zero-knowledge proofs of identity (extended abstract),, in Proceedings of the $19^{th}$ Annual ACM Symposium on Theory of Computing (STOC '87), (1987), 210.  doi: 10.1007/BF02351717.  Google Scholar

[43]

U. Feige, A. Fiat and A. Shamir, Zero-knowledge proofs of identity,, Journal of Cryptology, 1 (1988), 77.  doi: 10.1007/BF02351717.  Google Scholar

[44]

O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions,, Journal of the ACM (JACM), 33 (1986), 792.  doi: 10.1145/6490.6503.  Google Scholar

[45]

C. G. Günther, An identity-based key-exchange protocol,, in Advances in Cryptology-EUROCRYPT '89, (1989), 29.  doi: 10.1007/3-540-46885-4_5.  Google Scholar

[46]

D. Hofheinz, J. Müller-Quade and R. Steinwandt, Initiator-resilient universally composable key exchange,, in Proceedings of the $8^{th}$ European Symposium on Research in Computer Security (ESORICS 2003), 2908 (2003), 61.  doi: 10.1007/978-3-540-39650-5_4.  Google Scholar

[47]

J. Katz and Y. Lindell, Introduction to Modern Cryptography: Principles and Protocols,, 1st edition, (2007).   Google Scholar

[48]

H. Krawczyk, HMQV: A high-performance secure Diffie-Hellman protocol (extended abstract),, in Advances in Cryptology-CRYPTO'05, 3621 (2005), 546.  doi: 10.1007/11535218_33.  Google Scholar

[49]

B. LaMacchia, K. Lauter and A. Mityagin, Stronger security of authenticated key exchange,, in Proceedings of the $1^{st}$ International Conference on Provable Security (ProvSec '07), 4784 (2007), 1.  doi: 10.1007/978-3-540-75670-5_1.  Google Scholar

[50]

L. Law, A. Menezes, M. Qu, J. Solinas and S. Vanstone, An efficient protocol for authenticated key agreement,, Designs, 28 (2003), 119.  doi: 10.1023/A:1022595222606.  Google Scholar

[51]

C. Lenzen, T. Locher, P. Sommer and R. Wattenhofer, Clock synchronization: Open problems in theory and practice,, in International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM 2010), 5901 (2010), 61.  doi: 10.1007/978-3-642-11266-9_5.  Google Scholar

[52]

A. Menezes, Another look at HMQV,, Journal of Mathematical Cryptology, 1 (2007), 47.  doi: 10.1515/JMC.2007.004.  Google Scholar

[53]

A. Menezes, M. Qu and S. Vanstone, Some new key agreement protocols providing implicit authentication,, in Presented at the Workshop on Selected Areas in Cryptography (SAC '95), (1995), 22.   Google Scholar

[54]

R. M. Needham and M. D. Schroeder, Using encryption for authentication in large networks of computers,, Communications of the ACM, 21 (1978), 993.  doi: 10.1145/359657.359659.  Google Scholar

[55]

D. Otway and O. Rees, Efficient and timely mutual authentication,, ACM SIGOPS Operating Systems Review, 21 (1987), 8.  doi: 10.1145/24592.24594.  Google Scholar

[56]

R. C.-W. Phan, Cryptanalysis of a new ultralightweight RFID authentication protocol-SASI,, IEEE Transactions on Dependable and Secure Computing, 6 (2009), 316.  doi: 10.1109/TDSC.2008.33.  Google Scholar

[57]

A. P. Sarr, P. Elbaz-Vincent and J.-C. Bajard, A new security model for authenticated key agreement,, in Proceedings of the $7^{th}$ International Conference on Security and Cryptography for Networks (SCN '10), 6280 (2010), 219.  doi: 10.1007/978-3-642-15317-4_15.  Google Scholar

[58]

V. Shoup, On formal models for secure key exchange,, Technical report, (1999).   Google Scholar

[59]

V. Shoup and A. Rubin, Session key distribution using smart cards,, in Advances in Cryptology-EUROCRYPT '96, 1070 (2001), 321.  doi: 10.1007/3-540-68339-9_28.  Google Scholar

[60]

H.-M. Sun, W.-C. Ting and K.-H. Wang, On the security of Chien's ultralightweight RFID authentication protocol,, IEEE Transactions on Dependable and Secure Computing, 8 (2011), 315.  doi: 10.1109/TDSC.2009.26.  Google Scholar

[61]

I. Wiener, Sample SecurID token emulator with token secret import, 2000,, Available from , (): 2000.   Google Scholar

[62]

K. Yoneyama and Y. Zhao, Taxonomical security consideration of authenticated key exchange resilient to intermediate computation leakage,, in Proceedings of the $5^{th}$ International Conference on Provable Security (ProvSec 2011), 6980 (2011), 348.  doi: 10.1007/978-3-642-24316-5_25.  Google Scholar

[1]

Giacomo Micheli. Cryptanalysis of a noncommutative key exchange protocol. Advances in Mathematics of Communications, 2015, 9 (2) : 247-253. doi: 10.3934/amc.2015.9.247

[2]

Neal Koblitz, Alfred Menezes. Critical perspectives on provable security: Fifteen years of "another look" papers. Advances in Mathematics of Communications, 2019, 13 (4) : 517-558. doi: 10.3934/amc.2019034

[3]

Yang Lu, Jiguo Li. Forward-secure identity-based encryption with direct chosen-ciphertext security in the standard model. Advances in Mathematics of Communications, 2017, 11 (1) : 161-177. doi: 10.3934/amc.2017010

[4]

Meenakshi Kansal, Ratna Dutta, Sourav Mukhopadhyay. Group signature from lattices preserving forward security in dynamic setting. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020027

[5]

Neal Koblitz, Alfred Menezes. Another look at security definitions. Advances in Mathematics of Communications, 2013, 7 (1) : 1-38. doi: 10.3934/amc.2013.7.1

[6]

Isabelle Déchène. On the security of generalized Jacobian cryptosystems. Advances in Mathematics of Communications, 2007, 1 (4) : 413-426. doi: 10.3934/amc.2007.1.413

[7]

Xinwei Gao. Comparison analysis of Ding's RLWE-based key exchange protocol and NewHope variants. Advances in Mathematics of Communications, 2019, 13 (2) : 221-233. doi: 10.3934/amc.2019015

[8]

Yvo Desmedt, Niels Duif, Henk van Tilborg, Huaxiong Wang. Bounds and constructions for key distribution schemes. Advances in Mathematics of Communications, 2009, 3 (3) : 273-293. doi: 10.3934/amc.2009.3.273

[9]

Archana Prashanth Joshi, Meng Han, Yan Wang. A survey on security and privacy issues of blockchain technology. Mathematical Foundations of Computing, 2018, 1 (2) : 121-147. doi: 10.3934/mfc.2018007

[10]

Philip Lafrance, Alfred Menezes. On the security of the WOTS-PRF signature scheme. Advances in Mathematics of Communications, 2019, 13 (1) : 185-193. doi: 10.3934/amc.2019012

[11]

Riccardo Aragona, Alessio Meneghetti. Type-preserving matrices and security of block ciphers. Advances in Mathematics of Communications, 2019, 13 (2) : 235-251. doi: 10.3934/amc.2019016

[12]

Mohamed Baouch, Juan Antonio López-Ramos, Blas Torrecillas, Reto Schnyder. An active attack on a distributed Group Key Exchange system. Advances in Mathematics of Communications, 2017, 11 (4) : 715-717. doi: 10.3934/amc.2017052

[13]

Felipe Cabarcas, Daniel Cabarcas, John Baena. Efficient public-key operation in multivariate schemes. Advances in Mathematics of Communications, 2019, 13 (2) : 343-371. doi: 10.3934/amc.2019023

[14]

Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 63-76. doi: 10.3934/mfc.2018004

[15]

Liqun Qi, Zheng yan, Hongxia Yin. Semismooth reformulation and Newton's method for the security region problem of power systems. Journal of Industrial & Management Optimization, 2008, 4 (1) : 143-153. doi: 10.3934/jimo.2008.4.143

[16]

Zongmin Li, Jiuping Xu, Wenjing Shen, Benjamin Lev, Xiao Lei. Bilevel multi-objective construction site security planning with twofold random phenomenon. Journal of Industrial & Management Optimization, 2015, 11 (2) : 595-617. doi: 10.3934/jimo.2015.11.595

[17]

Jose-Luis Roca-Gonzalez. Designing dynamical systems for security and defence network knowledge management. A case of study: Airport bird control falconers organizations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1311-1329. doi: 10.3934/dcdss.2015.8.1311

[18]

Shuai Ren, Tao Zhang, Fangxia Shi, Zongzong Lou. The application of improved-DAA for the vehicle network node security in single- and multi-trusted domain. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1301-1309. doi: 10.3934/dcdss.2015.8.1301

[19]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[20]

Yang Lu, Quanling Zhang, Jiguo Li. An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications, 2015, 9 (3) : 353-373. doi: 10.3934/amc.2015.9.353

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]