
Previous Article
Plaintext checkable encryption with designated checker
 AMC Home
 This Issue

Next Article
Multiple coverings of the farthestoff points with small density from projective geometry
A lower bound on the average Hamming correlation of frequencyhopping sequence sets
1.  Department of Mathematical Sciences, Xi'an University of Technology, Xi'an, Shanxi 710048, China 
2.  School of Mathematics, Southwest Jiaotong University, Chengdu, 610031 
3.  Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 
References:
[1] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139. doi: 10.1109/TIT.2004.842708. 
[2] 
J. Chung and K. Yang, New frequencyhopping sequence sets with optimal average and good maximum hamming correlations,, IET Commun., 6 (2013), 2048. 
[3] 
C. Ding, R. FujiHara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366. 
[4] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741. doi: 10.1109/TIT.2008.926410. 
[5] 
Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequencyhopping sequences,, IEEE Trans. Inf. Theory, 55 (2009), 4279. doi: 10.1109/TIT.2009.2025569. 
[6] 
F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequencyhopping sequence set based upon generalized cyclotomy,, Des. Codes Crypt., 69 (2013), 247. doi: 10.1007/s106230129652z. 
[7] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and cross correlations of frequencyhopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149. doi: 10.1109/TIT.2004.833362. 
[8] 
D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences,, IET Commun., 4 (2010), 1775. doi: 10.1049/ietcom.2009.0783. 
[9] 
D. V. Sarwate, ReedSolomon codes and the design of sequences for spreadspectrum multipleaccess communications,, in ReedSolomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), (1994). 
[10] 
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook,, McGrawHill, (2002). 
[11] 
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length,, IEEE Trans. Inf. Theory, 59 (2013), 3237. doi: 10.1109/TIT.2013.2237754. 
show all references
References:
[1] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139. doi: 10.1109/TIT.2004.842708. 
[2] 
J. Chung and K. Yang, New frequencyhopping sequence sets with optimal average and good maximum hamming correlations,, IET Commun., 6 (2013), 2048. 
[3] 
C. Ding, R. FujiHara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297. doi: 10.1109/TIT.2009.2021366. 
[4] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741. doi: 10.1109/TIT.2008.926410. 
[5] 
Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequencyhopping sequences,, IEEE Trans. Inf. Theory, 55 (2009), 4279. doi: 10.1109/TIT.2009.2025569. 
[6] 
F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequencyhopping sequence set based upon generalized cyclotomy,, Des. Codes Crypt., 69 (2013), 247. doi: 10.1007/s106230129652z. 
[7] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and cross correlations of frequencyhopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149. doi: 10.1109/TIT.2004.833362. 
[8] 
D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences,, IET Commun., 4 (2010), 1775. doi: 10.1049/ietcom.2009.0783. 
[9] 
D. V. Sarwate, ReedSolomon codes and the design of sequences for spreadspectrum multipleaccess communications,, in ReedSolomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), (1994). 
[10] 
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook,, McGrawHill, (2002). 
[11] 
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length,, IEEE Trans. Inf. Theory, 59 (2013), 3237. doi: 10.1109/TIT.2013.2237754. 
[1] 
Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151159. doi: 10.3934/amc.2017009 
[2] 
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359373. doi: 10.3934/amc.2014.8.359 
[3] 
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal lowhitzone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 6779. doi: 10.3934/amc.2018004 
[4] 
Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequencyhopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373391. doi: 10.3934/amc.2019024 
[5] 
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505513. doi: 10.3934/amc.2018029 
[6] 
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199210. doi: 10.3934/amc.2015.9.199 
[7] 
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems  A, 2018, 38 (10) : 50855103. doi: 10.3934/dcds.2018223 
[8] 
Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91101. doi: 10.3934/amc.2013.7.91 
[9] 
Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293310. doi: 10.3934/amc.2013.7.293 
[10] 
WeiWen Hu. Integervalued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445452. doi: 10.3934/amc.2017037 
[11] 
Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167184. doi: 10.3934/ipi.2011.5.167 
[12] 
Lenny Fukshansky, Ahmad A. Shaar. A new family of onecoincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181188. doi: 10.3934/amc.2018012 
[13] 
Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209222. doi: 10.3934/amc.2014.8.209 
[14] 
Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems  A, 2018, 38 (11) : 57115733. doi: 10.3934/dcds.2018249 
[15] 
XinGuo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785796. doi: 10.3934/naco.2012.2.785 
[16] 
Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697731. doi: 10.3934/ipi.2018030 
[17] 
Hua Liang, Jinquan Luo, Yuansheng Tang. On crosscorrelation of a binary $m$sequence of period $2^{2k}1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693703. doi: 10.3934/amc.2017050 
[18] 
Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701713. doi: 10.3934/jimo.2007.3.701 
[19] 
Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems  A, 2016, 36 (9) : 50675096. doi: 10.3934/dcds.2016020 
[20] 
Jia Yue, NanJing Huang. Neutral and indifference pricing with stochastic correlation and volatility. Journal of Industrial & Management Optimization, 2018, 14 (1) : 199229. doi: 10.3934/jimo.2017043 
2017 Impact Factor: 0.564
Tools
Metrics
Other articles
by authors
[Back to Top]