
Previous Article
Multiple coverings of the farthestoff points with small density from projective geometry
 AMC Home
 This Issue

Next Article
Plaintext checkable encryption with designated checker
A lower bound on the average Hamming correlation of frequencyhopping sequence sets
1.  Department of Mathematical Sciences, Xi'an University of Technology, Xi'an, Shanxi 710048, China 
2.  School of Mathematics, Southwest Jiaotong University, Chengdu, 610031 
3.  Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 
References:
[1] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 11391141. doi: 10.1109/TIT.2004.842708. 
[2] 
J. Chung and K. Yang, New frequencyhopping sequence sets with optimal average and good maximum hamming correlations, IET Commun., 6 (2013), 20482053. 
[3] 
C. Ding, R. FujiHara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 32973304. doi: 10.1109/TIT.2009.2021366. 
[4] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 37413745. doi: 10.1109/TIT.2008.926410. 
[5] 
Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequencyhopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 42794285. doi: 10.1109/TIT.2009.2025569. 
[6] 
F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequencyhopping sequence set based upon generalized cyclotomy, Des. Codes Crypt., 69 (2013), 247259. doi: 10.1007/s106230129652z. 
[7] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and cross correlations of frequencyhopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 21492154. doi: 10.1109/TIT.2004.833362. 
[8] 
D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences, IET Commun., 4 (2010), 17751786. doi: 10.1049/ietcom.2009.0783. 
[9] 
D. V. Sarwate, ReedSolomon codes and the design of sequences for spreadspectrum multipleaccess communications, in ReedSolomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), IEEE Press, Piscataway, 1994. 
[10] 
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, McGrawHill, 2002. 
[11] 
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 32373248. doi: 10.1109/TIT.2013.2237754. 
show all references
References:
[1] 
W. Chu and C. J. Colbourn, Optimal frequencyhopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 11391141. doi: 10.1109/TIT.2004.842708. 
[2] 
J. Chung and K. Yang, New frequencyhopping sequence sets with optimal average and good maximum hamming correlations, IET Commun., 6 (2013), 20482053. 
[3] 
C. Ding, R. FujiHara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions, IEEE Trans. Inf. Theory, 55 (2009), 32973304. doi: 10.1109/TIT.2009.2021366. 
[4] 
C. Ding and J. Yin, Sets of optimal frequencyhopping sequences, IEEE Trans. Inf. Theory, 54 (2008), 37413745. doi: 10.1109/TIT.2008.926410. 
[5] 
Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequencyhopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 42794285. doi: 10.1109/TIT.2009.2025569. 
[6] 
F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequencyhopping sequence set based upon generalized cyclotomy, Des. Codes Crypt., 69 (2013), 247259. doi: 10.1007/s106230129652z. 
[7] 
D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto and cross correlations of frequencyhopping sequences, IEEE Trans. Inf. Theory, 50 (2004), 21492154. doi: 10.1109/TIT.2004.833362. 
[8] 
D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences, IET Commun., 4 (2010), 17751786. doi: 10.1049/ietcom.2009.0783. 
[9] 
D. V. Sarwate, ReedSolomon codes and the design of sequences for spreadspectrum multipleaccess communications, in ReedSolomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), IEEE Press, Piscataway, 1994. 
[10] 
M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook, McGrawHill, 2002. 
[11] 
X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 32373248. doi: 10.1109/TIT.2013.2237754. 
[1] 
Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151159. doi: 10.3934/amc.2017009 
[2] 
Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359373. doi: 10.3934/amc.2014.8.359 
[3] 
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal lowhitzone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 6779. doi: 10.3934/amc.2018004 
[4] 
Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequencyhopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373391. doi: 10.3934/amc.2019024 
[5] 
Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505513. doi: 10.3934/amc.2018029 
[6] 
Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199210. doi: 10.3934/amc.2015.9.199 
[7] 
Xianhong Xie, Yi Ouyang, Honggang Hu, Ming Mao. Construction of three classes of strictly optimal frequencyhopping sequence sets. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022024 
[8] 
Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 50855103. doi: 10.3934/dcds.2018223 
[9] 
Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91101. doi: 10.3934/amc.2013.7.91 
[10] 
Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293310. doi: 10.3934/amc.2013.7.293 
[11] 
Wenli Ren, Feng Wang. A new class of optimal widegap onecoincidence frequencyhopping sequence sets. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020131 
[12] 
Wenjuan Yin, Can Xiang, FangWei Fu. Two constructions of lowhitzone frequencyhopping sequence sets. Advances in Mathematics of Communications, 2022, 16 (2) : 249267. doi: 10.3934/amc.2020110 
[13] 
WeiWen Hu. Integervalued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445452. doi: 10.3934/amc.2017037 
[14] 
Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2021, 15 (4) : 647662. doi: 10.3934/amc.2020087 
[15] 
Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems and Imaging, 2011, 5 (1) : 167184. doi: 10.3934/ipi.2011.5.167 
[16] 
Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 19. doi: 10.3934/amc.2020001 
[17] 
Lenny Fukshansky, Ahmad A. Shaar. A new family of onecoincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181188. doi: 10.3934/amc.2018012 
[18] 
Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209222. doi: 10.3934/amc.2014.8.209 
[19] 
Minjia Shi, Liqin Qian, Tor Helleseth, Patrick Solé. Fiveweight codes from threevalued correlation of Msequences. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021022 
[20] 
Vladimír Špitalský. Local correlation entropy. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 57115733. doi: 10.3934/dcds.2018249 
2020 Impact Factor: 0.935
Tools
Metrics
Other articles
by authors
[Back to Top]