February  2015, 9(1): 55-62. doi: 10.3934/amc.2015.9.55

A lower bound on the average Hamming correlation of frequency-hopping sequence sets

1. 

Department of Mathematical Sciences, Xi'an University of Technology, Xi'an, Shanxi 710048, China

2. 

School of Mathematics, Southwest Jiaotong University, Chengdu, 610031

3. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

Received  May 2014 Revised  August 2014 Published  February 2015

The average Hamming correlation is an important indicator of frequency-hopping sequences (FHSs) which measures the average performance of FHSs employed in practical frequency-hopping multiple access (FHMA) communication systems. In this paper, a lower bound on average Hamming auto- and cross correlations of an FHS set is derived. It generalizes and improves the lower bound proposed recently by Peng, Niu and Tang. A simple necessary and sufficient condition for an FHS set to meet the new bound is given. Based on this condition, two classes of FHS sets whose average Hamming correlations reach the proposed bound are introduced.
Citation: Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequency-hopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 55-62. doi: 10.3934/amc.2015.9.55
References:
[1]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[2]

J. Chung and K. Yang, New frequency-hopping sequence sets with optimal average and good maximum hamming correlations,, IET Commun., 6 (2013), 2048.   Google Scholar

[3]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[4]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[5]

Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences,, IEEE Trans. Inf. Theory, 55 (2009), 4279.  doi: 10.1109/TIT.2009.2025569.  Google Scholar

[6]

F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequency-hopping sequence set based upon generalized cyclotomy,, Des. Codes Crypt., 69 (2013), 247.  doi: 10.1007/s10623-012-9652-z.  Google Scholar

[7]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[8]

D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences,, IET Commun., 4 (2010), 1775.  doi: 10.1049/iet-com.2009.0783.  Google Scholar

[9]

D. V. Sarwate, Reed-Solomon codes and the design of sequences for spread-spectrum multiple-access communications,, in Reed-Solomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), (1994).   Google Scholar

[10]

M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook,, McGraw-Hill, (2002).   Google Scholar

[11]

X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length,, IEEE Trans. Inf. Theory, 59 (2013), 3237.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

show all references

References:
[1]

W. Chu and C. J. Colbourn, Optimal frequency-hopping sequences via cyclotomy,, IEEE Trans. Inf. Theory, 51 (2005), 1139.  doi: 10.1109/TIT.2004.842708.  Google Scholar

[2]

J. Chung and K. Yang, New frequency-hopping sequence sets with optimal average and good maximum hamming correlations,, IET Commun., 6 (2013), 2048.   Google Scholar

[3]

C. Ding, R. Fuji-Hara, Y. Fujiwara, M. Jimbo and M. Mishima, Sets of frequency hopping sequences: bounds and optimal constructions,, IEEE Trans. Inf. Theory, 55 (2009), 3297.  doi: 10.1109/TIT.2009.2021366.  Google Scholar

[4]

C. Ding and J. Yin, Sets of optimal frequency-hopping sequences,, IEEE Trans. Inf. Theory, 54 (2008), 3741.  doi: 10.1109/TIT.2008.926410.  Google Scholar

[5]

Y. K. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences,, IEEE Trans. Inf. Theory, 55 (2009), 4279.  doi: 10.1109/TIT.2009.2025569.  Google Scholar

[6]

F. Liu, D. Peng, Z. Zhou and X. Tang, A new frequency-hopping sequence set based upon generalized cyclotomy,, Des. Codes Crypt., 69 (2013), 247.  doi: 10.1007/s10623-012-9652-z.  Google Scholar

[7]

D. Y. Peng and P. Z. Fan, Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences,, IEEE Trans. Inf. Theory, 50 (2004), 2149.  doi: 10.1109/TIT.2004.833362.  Google Scholar

[8]

D. Peng, X. Niu and X. Tang, Average Hamming correlation for the cubic polynomial hopping sequences,, IET Commun., 4 (2010), 1775.  doi: 10.1049/iet-com.2009.0783.  Google Scholar

[9]

D. V. Sarwate, Reed-Solomon codes and the design of sequences for spread-spectrum multiple-access communications,, in Reed-Solomon Codes and Their Applications (eds. S.B. Wicker and V.K. Bharagava), (1994).   Google Scholar

[10]

M. K. Simon, J. K. Omura, R. A. Scholtz and B. K. Levitt, Spread Spectrum Communications Handbook,, McGraw-Hill, (2002).   Google Scholar

[11]

X. Zeng, H. Cai, X. Tang and Y. Yang, Optimal frequency hopping sequences of odd length,, IEEE Trans. Inf. Theory, 59 (2013), 3237.  doi: 10.1109/TIT.2013.2237754.  Google Scholar

[1]

Xing Liu, Daiyuan Peng. Frequency hopping sequences with optimal aperiodic Hamming correlation by interleaving techniques. Advances in Mathematics of Communications, 2017, 11 (1) : 151-159. doi: 10.3934/amc.2017009

[2]

Xing Liu, Daiyuan Peng. Sets of frequency hopping sequences under aperiodic Hamming correlation: Upper bound and optimal constructions. Advances in Mathematics of Communications, 2014, 8 (3) : 359-373. doi: 10.3934/amc.2014.8.359

[3]

Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal low-hit-zone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 67-79. doi: 10.3934/amc.2018004

[4]

Shanding Xu, Xiwang Cao, Jiafu Mi, Chunming Tang. More cyclotomic constructions of optimal frequency-hopping sequences. Advances in Mathematics of Communications, 2019, 13 (3) : 373-391. doi: 10.3934/amc.2019024

[5]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[6]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[7]

Yu Zheng, Li Peng, Teturo Kamae. Characterization of noncorrelated pattern sequences and correlation dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5085-5103. doi: 10.3934/dcds.2018223

[8]

Fang Liu, Daiyuan Peng, Zhengchun Zhou, Xiaohu Tang. New constructions of optimal frequency hopping sequences with new parameters. Advances in Mathematics of Communications, 2013, 7 (1) : 91-101. doi: 10.3934/amc.2013.7.91

[9]

Xianhua Niu, Daiyuan Peng, Zhengchun Zhou. New classes of optimal frequency hopping sequences with low hit zone. Advances in Mathematics of Communications, 2013, 7 (3) : 293-310. doi: 10.3934/amc.2013.7.293

[10]

Wei-Wen Hu. Integer-valued Alexis sequences with large zero correlation zone. Advances in Mathematics of Communications, 2017, 11 (3) : 445-452. doi: 10.3934/amc.2017037

[11]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[12]

Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 1-9. doi: 10.3934/amc.2020001

[13]

Lenny Fukshansky, Ahmad A. Shaar. A new family of one-coincidence sets of sequences with dispersed elements for frequency hopping cdma systems. Advances in Mathematics of Communications, 2018, 12 (1) : 181-188. doi: 10.3934/amc.2018012

[14]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[15]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[16]

Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785

[17]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[18]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[19]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial & Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[20]

Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]