\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Polar codes for distributed hierarchical source coding

Abstract Related Papers Cited by
  • We show that polar codes can be used to achieve the rate-distortion functions in the problem of hierarchical source coding also known as the successive refinement problem. We also analyze the distributed version of this problem, constructing a polar coding scheme that achieves the rate distortion functions for successive refinement with side information.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. Abbe and E. Telatar, Polar codes for the $m$-user multiple access channel, IEEE Trans. Inform. Theory, 58 (2012), 5437-5448.doi: 10.1109/TIT.2012.2201374.

    [2]

    R. Ahlswede, The rate-distortion region for multiple descriptions without excess rates, IEEE Trans. Inform. Theory, 31 (1985), 721-726.doi: 10.1109/TIT.1985.1057102.

    [3]

    E. Arikan, Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels, IEEE Trans. Inform. Theory, 55 (2009), 3051-3073.doi: 10.1109/TIT.2009.2021379.

    [4]

    E. Arikan, Source polarization, in Proc. IEEE Int. Symp. Inf. Theory, Austin, 2010, 899-903.doi: 10.1109/ISIT.2010.5513567.

    [5]

    A. El Gamal and T. Cover, Achievable rates for multiple descriptions, IEEE Trans. Inform. Theory, 28 (1991), 269-275.doi: 10.1109/TIT.1982.1056588.

    [6]

    W. Equitz and T. Cover, Successive refinement of information, IEEE Trans. Inform. Theory, 37 (1991), 269-275.doi: 10.1109/18.75242.

    [7]

    T. C. Gulcu and A. Barg, Achieving secrecy capacity of the wiretap channel and broadcast channel with a confidential component, preprint, arXiv:1410.3422

    [8]

    T. C. Gulcu and A. Barg, Interactive function computation via polar coding, preprint, arXiv:1405.0894

    [9]

    J. Honda and H. Yamamoto, Polar coding without alphabet extension for asymmetric models, IEEE Trans. Inform. Theory, 59 (2013), 7829-7838.doi: 10.1109/TIT.2013.2282305.

    [10]

    S. B. Korada, Polar Codes for Channel and Source Coding, Ph.D thesis, EPFL, 2009.doi: 10.5075/epfl-thesis-4461.

    [11]

    V. N. Koshelev, Hierarchical coding of discrete sources, Probl. Inform. Trans., 16 (1980), 11-19.

    [12]

    V. N. Koshelev, Estimation of mean error for a discrete successive-approximation scheme, Probl. Inform. Trans., 17 (1981), 20-33.

    [13]

    V. N. Koshelev, Divisibility of discrete sources with symbol-wise additive error measure, Probl. Inform. Trans., 30 (1994), 31-50.

    [14]

    H. Mahdavifar and A. Vardy, Achieving the secrecy capacity of wiretap channels using polar codes, IEEE Trans. Inform. Theory, 57 (2011), 6428-6443.doi: 10.1109/TIT.2011.2162275.

    [15]

    M. Mondelli, H. Hassani, I. Sason and R. L. Urbanke, Achieving Marton's region for broadcast channels using polar codes, IEEE Trans. Inform. Theory, 61 (2015), 783-800.doi: 10.1109/TIT.2014.2368555.

    [16]

    R. Mori and T. Tanaka, Source and channel polarization over finite fields and Reed-Solomon matrices, IEEE Trans. Inform. Theory, 60 (2014), 2720-2736.doi: 10.1109/TIT.2014.2312181.

    [17]

    W. Park and A. Barg, Polar codes for $q$-ary channels, $q=2^r$, IEEE Trans. Inform. Theory, 59 (2013), 955-969.doi: 10.1109/TIT.2012.2219035.

    [18]

    B. Rimoldi, Successive refinement of information: Characterization of achievable rates, IEEE Trans. Inform. Theory, 40 (1994), 253-259.doi: 10.1109/18.272493.

    [19]

    A. Sahebi and S. S. Pradhan, Polar codes for some multi-terminal communications problems, preprint, arXiv:1401.7006

    [20]

    Y. Steinberg and N. Merhav, On successive refinement for the Wyner-Ziv problem, IEEE Trans. Inform. Theory, 50 (2004), 1636-1654.doi: 10.1109/TIT.2004.831781.

    [21]

    A. Wyner and J. Ziv, The rate-distortion function for source coding with side information at the decoder, IEEE Trans. Inform. Theory, 22 (1976), 1-10.doi: 10.1109/TIT.1976.1055508.

    [22]

    Y. Zhang, S. Dumitrescu, J. Chen and Z. Sun, LDGM-based codes for successive refinement, in 47th Ann. Allerton Conf. Commun. Control Comput., 2009, 1518-1524.doi: 10.1109/ALLERTON.2009.5394494.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(169) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return