
Previous Article
Some new classes of cyclic codes with three or six weights
 AMC Home
 This Issue

Next Article
Existence conditions for selforthogonal negacyclic codes over finite fields
Zero correlation zone sequence set with intergroup orthogonal and intersubgroup complementary properties
1.  College of Communication Engineering, Chongqing University, Chongqing 400044, China, China 
2.  College of Communication Engineering, Chongqing University, Chongqing 400044, China, and Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035 
3.  Chongqing Key Laboratory of Emergency Communication, Chongqing Communication Institute, Chongqing 400035 
References:
[1] 
H. H. Chen, Y. C. Yeh, et al., Generalized pairwise complementary codes with setwise uniform interferencefree windows, IEEE J. Sel. Areas Commun., 24 (2006), 6574. Google Scholar 
[2] 
P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. M. Deng, A class of binary sequences with zero correlation zone, Electr. Lett., 35 (1999), 777779. Google Scholar 
[3] 
P. Z. Fan, W. N. Yuan and Y. F. Tu, Zcomplementary binary sequences, IEEE Signal Process. Lett., 14 (2007), 509512. Google Scholar 
[4] 
L. F. Feng, P. Z. Fan, X. H. Tang and K.K. Loo, Generalized pairwise Zcomplementary codes, IEEE Signal Process. Lett., 15 (2008), 377380. Google Scholar 
[5] 
L. F. Feng, X. W. Zhou and P. Z. Fan, A construction of intergroup complementary codes with flexible ZCZ length, J. Zhejiang Univ. Sci. C, 12 (2011), 846854. Google Scholar 
[6] 
L. F. Feng, X. W. Zhou and X. Y. Li, A general construction of intergroup complementary codes based on Zcomplementary codes and perfect periodic crosscorrelation codes, Wireless Pers. Commun., 71 (2012), 695706. Google Scholar 
[7] 
M. J. E. Golay, Complementary series, IRE. Trans. Inf. Theory, 7 (1961), 8287. Google Scholar 
[8] 
T. Hayashi, Ternary sequence set having periodic and aperiodic zerocorrelation zone, IEICE Trans. Fundamentals, E89A (2006), 18251831. Google Scholar 
[9] 
T. Hayashi, T. Maeda and S. Matsufuji, A generalized construction scheme of a zerocorrelation zone sequence set with a wide intersubset zerocorrelation zone, IEICE Trans. Fundamentals, E95A (2012), 19311936. Google Scholar 
[10] 
T. Hayashi, T. Maeda, S. Matsufuji and S. Okawa, A ternary zerocorrelation zone sequence set having wide intersubset zerocorrelation zone, IEICE Trans. Fundamentals, E94A (2011), 22302235. Google Scholar 
[11] 
T. Hayashi, T. Maeda and S. Okawa, A generalized construction of zerocorrelation zone sequence set with sequence subsets, IEICE Trans. Fundamentals, E94A (2011), 15971602. Google Scholar 
[12] 
T. Hayashi and S. Matsufuji, A generalized construction of optimal zerocorrelation zone sequence set from a perfect sequence pair, IEICE Trans. Fundamentals, E93A (2010), 23372344. Google Scholar 
[13] 
H. G. Hu and G. Gong, New sets of zero or low correlation zone sequences via interleaving techniques, IEEE Trans. Inf. Theory, 56 (2010), 17021713. doi: 10.1109/TIT.2010.2040887. Google Scholar 
[14] 
J. W. Jang, Y. S. Kim and S. H. Kim, New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set, Adv. Math. Commun., 3 (2009), 115124. doi: 10.3934/amc.2009.3.115. Google Scholar 
[15] 
J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 6168. doi: 10.3934/amc.2010.4.61. Google Scholar 
[16] 
J. Li, A. P. Huang, M. Guizani and H. H. Chen, Intergroup complementary codes for interferenceresistant CDMA wireless communications, IEEE Trans. Wireless Commun., 7 (2008), 166174. Google Scholar 
[17] 
X. D. Li, P. Z. Fan, X. H. Tang and L. Hao, Quadriphase Zcomplementary sequences, IEICE Trans. Fundamentals, E93A (2010), 22512257. Google Scholar 
[18] 
Y. B. Li, C. Q. Xu and K. Liu, Construction of mutually orthogonal zero correlation zone polyphase sequence sets, IEICE Trans. Fundamentals, E94A (2011), 11591164. Google Scholar 
[19] 
S. Matsufuji, T. Matsumoto, T. Hayashida, T. Hayashi, N. Kuroyanagi and P. Z. FAN, On a ZCZ code including a sequence used for a synchronization symbol, IEICE Trans. Fundamentals, E93A (2010), 22862290. Google Scholar 
[20] 
K. Omata, H. Torii and T. Matsumoto, Zerocrosscorrelation properties of asymmetric ZCZ sequence sets, IEICE Trans. Fundamentals, E95A (2012), 19261930. Google Scholar 
[21] 
A. Rathinakumar and A. K. Chaturvedi, Mutually orthogonal sets of ZCZ sequences, Electron. Lett., 40 (2004), 11331134. Google Scholar 
[22] 
A. Rathinakumar and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 38173826. doi: 10.1109/TIT.2006.878171. Google Scholar 
[23] 
A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from ReedMuller codes, IEEE Trans. Inf. Theory, 54 (2008), 13391346. doi: 10.1109/TIT.2007.915980. Google Scholar 
[24] 
X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good crosscorrelation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 40384045. doi: 10.1109/TIT.2010.2050796. Google Scholar 
[25] 
X. H. Tang and W. H. Mow, Design of spreading codes for quasisynchronous CDMA with intercell interference, IEEE J. Sel. Areas Commun., 24 (2006), 8493. Google Scholar 
[26] 
X. H. Tang and W. H. Mow, A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences, IEEE Trans. Inf. Theory, 54 (2008), 57295734. doi: 10.1109/TIT.2008.2006574. Google Scholar 
[27] 
H. Torii, T. Matsumoto and M. Nakamura, A new method for constructing asymmetric ZCZ sequences sets, IEICE Trans. Fundamentals, E95A (2012), 15771586. Google Scholar 
[28] 
H. Torii, M. Nakamura and N. Suehiro, A new class of zerocorrelation zone sequences, IEEE Trans. Inf. Theory, 50 (2004), 559565. doi: 10.1109/TIT.2004.825399. Google Scholar 
[29] 
H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Generalized mutually orthogonal ZCZ sequence sets based on perfect sequences and orthogonal codes, in Proc. 15th Int. Conf. Adv. Commun. Techn., 2013, 894899. Google Scholar 
[30] 
H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Quasioptimal and optimal generalized mutually orthogonal ZCZ sequence sets based on an interleaving technique, Int. J. Commun., 7 (2013), 1825. Google Scholar 
[31] 
Y. F. Tu, P. Z. Fan, L. Hao and X. Y. Li, Construction of binary array set with zero correlation zone based on interleaving technique, IEICE Trans. Fundamentals, E94A (2011), 766772. doi: 10.1587/transfun.E94.A.766. Google Scholar 
[32] 
Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Zperiodic complementary sequence set based on phase shift, IEEE Signal Process. Lett., 17 (2010), 891893. Google Scholar 
[33] 
F. X. Zeng, New perfect ployphase sequences and mutually orthogonal ZCZ polyphase sequence sets, IEICE trans. Fundamentals, E92A (2009), 17311736. Google Scholar 
[34] 
F. X. Zeng, X. P. Zeng, Z. Y. Zhang and G. X. Xuan, Quaternary periodic complementary/Zcomplementary sequence sets based upon interleaving technique and Gray mapping, Adv. Math. Commun., 6 (2012), 237247. doi: 10.3934/amc.2012.6.237. Google Scholar 
[35] 
C. Zhang, X. M. Tao, S. Yamada and M. Hatori, Sequence set with three zero correlation zone and its application in MCCDMA system, IEICE Trans. Fundamentals, E89A (2006), 22752282. doi: 10.1093/ietfec/e89a.9.2275. Google Scholar 
[36] 
Z. Y. Zhang, W. Chen, F. X. Zeng, H. Wu and Y. H. Zhong, Zcomplementary sets based on sequences with periodic and aperiodic zero correlation zone, EURASIP J. Wireless Comm. Networking, 2009 (2009), 18. doi: 10.1155/2009/418026. Google Scholar 
[37] 
Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multiwidth zero crosscorrelation zone, IEICE Trans. Fundamentals, E93A (2010), 15081517. doi: 10.1587/transfun.E93.A.1508. Google Scholar 
[38] 
Z. C. Zhou, X. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inf. Theory, 54 (2008), 42674273. doi: 10.1109/TIT.2008.928256. Google Scholar 
show all references
References:
[1] 
H. H. Chen, Y. C. Yeh, et al., Generalized pairwise complementary codes with setwise uniform interferencefree windows, IEEE J. Sel. Areas Commun., 24 (2006), 6574. Google Scholar 
[2] 
P. Z. Fan, N. Suehiro, N. Kuroyanagi and X. M. Deng, A class of binary sequences with zero correlation zone, Electr. Lett., 35 (1999), 777779. Google Scholar 
[3] 
P. Z. Fan, W. N. Yuan and Y. F. Tu, Zcomplementary binary sequences, IEEE Signal Process. Lett., 14 (2007), 509512. Google Scholar 
[4] 
L. F. Feng, P. Z. Fan, X. H. Tang and K.K. Loo, Generalized pairwise Zcomplementary codes, IEEE Signal Process. Lett., 15 (2008), 377380. Google Scholar 
[5] 
L. F. Feng, X. W. Zhou and P. Z. Fan, A construction of intergroup complementary codes with flexible ZCZ length, J. Zhejiang Univ. Sci. C, 12 (2011), 846854. Google Scholar 
[6] 
L. F. Feng, X. W. Zhou and X. Y. Li, A general construction of intergroup complementary codes based on Zcomplementary codes and perfect periodic crosscorrelation codes, Wireless Pers. Commun., 71 (2012), 695706. Google Scholar 
[7] 
M. J. E. Golay, Complementary series, IRE. Trans. Inf. Theory, 7 (1961), 8287. Google Scholar 
[8] 
T. Hayashi, Ternary sequence set having periodic and aperiodic zerocorrelation zone, IEICE Trans. Fundamentals, E89A (2006), 18251831. Google Scholar 
[9] 
T. Hayashi, T. Maeda and S. Matsufuji, A generalized construction scheme of a zerocorrelation zone sequence set with a wide intersubset zerocorrelation zone, IEICE Trans. Fundamentals, E95A (2012), 19311936. Google Scholar 
[10] 
T. Hayashi, T. Maeda, S. Matsufuji and S. Okawa, A ternary zerocorrelation zone sequence set having wide intersubset zerocorrelation zone, IEICE Trans. Fundamentals, E94A (2011), 22302235. Google Scholar 
[11] 
T. Hayashi, T. Maeda and S. Okawa, A generalized construction of zerocorrelation zone sequence set with sequence subsets, IEICE Trans. Fundamentals, E94A (2011), 15971602. Google Scholar 
[12] 
T. Hayashi and S. Matsufuji, A generalized construction of optimal zerocorrelation zone sequence set from a perfect sequence pair, IEICE Trans. Fundamentals, E93A (2010), 23372344. Google Scholar 
[13] 
H. G. Hu and G. Gong, New sets of zero or low correlation zone sequences via interleaving techniques, IEEE Trans. Inf. Theory, 56 (2010), 17021713. doi: 10.1109/TIT.2010.2040887. Google Scholar 
[14] 
J. W. Jang, Y. S. Kim and S. H. Kim, New design of quaternary LCZ and ZCZ sequence set from binary LCZ and ZCZ sequence set, Adv. Math. Commun., 3 (2009), 115124. doi: 10.3934/amc.2009.3.115. Google Scholar 
[15] 
J. W. Jang, Y. S. Kim, S. H. Kim and D. W. Lim, New construction methods of quaternary periodic complementary sequence sets, Adv. Math. Commun., 4 (2010), 6168. doi: 10.3934/amc.2010.4.61. Google Scholar 
[16] 
J. Li, A. P. Huang, M. Guizani and H. H. Chen, Intergroup complementary codes for interferenceresistant CDMA wireless communications, IEEE Trans. Wireless Commun., 7 (2008), 166174. Google Scholar 
[17] 
X. D. Li, P. Z. Fan, X. H. Tang and L. Hao, Quadriphase Zcomplementary sequences, IEICE Trans. Fundamentals, E93A (2010), 22512257. Google Scholar 
[18] 
Y. B. Li, C. Q. Xu and K. Liu, Construction of mutually orthogonal zero correlation zone polyphase sequence sets, IEICE Trans. Fundamentals, E94A (2011), 11591164. Google Scholar 
[19] 
S. Matsufuji, T. Matsumoto, T. Hayashida, T. Hayashi, N. Kuroyanagi and P. Z. FAN, On a ZCZ code including a sequence used for a synchronization symbol, IEICE Trans. Fundamentals, E93A (2010), 22862290. Google Scholar 
[20] 
K. Omata, H. Torii and T. Matsumoto, Zerocrosscorrelation properties of asymmetric ZCZ sequence sets, IEICE Trans. Fundamentals, E95A (2012), 19261930. Google Scholar 
[21] 
A. Rathinakumar and A. K. Chaturvedi, Mutually orthogonal sets of ZCZ sequences, Electron. Lett., 40 (2004), 11331134. Google Scholar 
[22] 
A. Rathinakumar and A. K. Chaturvedi, A new framework for constructing mutually orthogonal complementary sets and ZCZ sequences, IEEE Trans. Inf. Theory, 52 (2006), 38173826. doi: 10.1109/TIT.2006.878171. Google Scholar 
[23] 
A. Rathinakumar and A. K. Chaturvedi, Complete mutually orthogonal Golay complementary sets from ReedMuller codes, IEEE Trans. Inf. Theory, 54 (2008), 13391346. doi: 10.1109/TIT.2007.915980. Google Scholar 
[24] 
X. H. Tang, P. Z. Fan and J. Lindner, Multiple binary ZCZ sequence sets with good crosscorrelation property based on complementary sequence sets, IEEE Trans. Inf. Theory, 56 (2010), 40384045. doi: 10.1109/TIT.2010.2050796. Google Scholar 
[25] 
X. H. Tang and W. H. Mow, Design of spreading codes for quasisynchronous CDMA with intercell interference, IEEE J. Sel. Areas Commun., 24 (2006), 8493. Google Scholar 
[26] 
X. H. Tang and W. H. Mow, A new systematic construction of zero correlation zone sequences based on interleaved perfect sequences, IEEE Trans. Inf. Theory, 54 (2008), 57295734. doi: 10.1109/TIT.2008.2006574. Google Scholar 
[27] 
H. Torii, T. Matsumoto and M. Nakamura, A new method for constructing asymmetric ZCZ sequences sets, IEICE Trans. Fundamentals, E95A (2012), 15771586. Google Scholar 
[28] 
H. Torii, M. Nakamura and N. Suehiro, A new class of zerocorrelation zone sequences, IEEE Trans. Inf. Theory, 50 (2004), 559565. doi: 10.1109/TIT.2004.825399. Google Scholar 
[29] 
H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Generalized mutually orthogonal ZCZ sequence sets based on perfect sequences and orthogonal codes, in Proc. 15th Int. Conf. Adv. Commun. Techn., 2013, 894899. Google Scholar 
[30] 
H. Torii, M. Satoh, T. Matsumoto and M. Nakamura, Quasioptimal and optimal generalized mutually orthogonal ZCZ sequence sets based on an interleaving technique, Int. J. Commun., 7 (2013), 1825. Google Scholar 
[31] 
Y. F. Tu, P. Z. Fan, L. Hao and X. Y. Li, Construction of binary array set with zero correlation zone based on interleaving technique, IEICE Trans. Fundamentals, E94A (2011), 766772. doi: 10.1587/transfun.E94.A.766. Google Scholar 
[32] 
Y. F. Tu, P. Z. Fan, L. Hao and X. H. Tang, A simple method for generating optimal Zperiodic complementary sequence set based on phase shift, IEEE Signal Process. Lett., 17 (2010), 891893. Google Scholar 
[33] 
F. X. Zeng, New perfect ployphase sequences and mutually orthogonal ZCZ polyphase sequence sets, IEICE trans. Fundamentals, E92A (2009), 17311736. Google Scholar 
[34] 
F. X. Zeng, X. P. Zeng, Z. Y. Zhang and G. X. Xuan, Quaternary periodic complementary/Zcomplementary sequence sets based upon interleaving technique and Gray mapping, Adv. Math. Commun., 6 (2012), 237247. doi: 10.3934/amc.2012.6.237. Google Scholar 
[35] 
C. Zhang, X. M. Tao, S. Yamada and M. Hatori, Sequence set with three zero correlation zone and its application in MCCDMA system, IEICE Trans. Fundamentals, E89A (2006), 22752282. doi: 10.1093/ietfec/e89a.9.2275. Google Scholar 
[36] 
Z. Y. Zhang, W. Chen, F. X. Zeng, H. Wu and Y. H. Zhong, Zcomplementary sets based on sequences with periodic and aperiodic zero correlation zone, EURASIP J. Wireless Comm. Networking, 2009 (2009), 18. doi: 10.1155/2009/418026. Google Scholar 
[37] 
Z. Y. Zhang, F. X. Zeng and G. X. Xuan, A class of complementary sequences with multiwidth zero crosscorrelation zone, IEICE Trans. Fundamentals, E93A (2010), 15081517. doi: 10.1587/transfun.E93.A.1508. Google Scholar 
[38] 
Z. C. Zhou, X. H. Tang and G. Gong, A new class of sequences with zero or low correlation zone based on interleaving technique, IEEE Trans. Inf. Theory, 54 (2008), 42674273. doi: 10.1109/TIT.2008.928256. Google Scholar 
[1] 
JiWoong Jang, YoungSik Kim, SangHyo Kim, DaeWoon Lim. New construction methods of quaternary periodic complementary sequence sets. Advances in Mathematics of Communications, 2010, 4 (1) : 6168. doi: 10.3934/amc.2010.4.61 
[2] 
Fanxin Zeng, Xiaoping Zeng, Zhenyu Zhang, Guixin Xuan. Quaternary periodic complementary/Zcomplementary sequence sets based on interleaving technique and Gray mapping. Advances in Mathematics of Communications, 2012, 6 (2) : 237247. doi: 10.3934/amc.2012.6.237 
[3] 
Longye Wang, Gaoyuan Zhang, Hong Wen, Xiaoli Zeng. An asymmetric ZCZ sequence set with intersubset uncorrelated property and flexible ZCZ length. Advances in Mathematics of Communications, 2018, 12 (3) : 541552. doi: 10.3934/amc.2018032 
[4] 
Yang Yang, Xiaohu Tang, Guang Gong. Even periodic and odd periodic complementary sequence pairs from generalized Boolean functions. Advances in Mathematics of Communications, 2013, 7 (2) : 113125. doi: 10.3934/amc.2013.7.113 
[5] 
Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 435448. doi: 10.3934/dcds.2017018 
[6] 
Limengnan Zhou, Daiyuan Peng, Hongyu Han, Hongbin Liang, Zheng Ma. Construction of optimal lowhitzone frequency hopping sequence sets under periodic partial Hamming correlation. Advances in Mathematics of Communications, 2018, 12 (1) : 6779. doi: 10.3934/amc.2018004 
[7] 
Tinghua Hu, Yang Yang, Zhengchun Zhou. Golay complementary sets with large zero oddperiodic correlation zones. Advances in Mathematics of Communications, 2021, 15 (1) : 2333. doi: 10.3934/amc.2020040 
[8] 
Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$ary $m$sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375390. doi: 10.3934/amc.2015.9.375 
[9] 
Zilong Wang, Guang Gong. Correlation of binary sequence families derived from the multiplicative characters of finite fields. Advances in Mathematics of Communications, 2013, 7 (4) : 475484. doi: 10.3934/amc.2013.7.475 
[10] 
Aixian Zhang, Zhengchun Zhou, Keqin Feng. A lower bound on the average Hamming correlation of frequencyhopping sequence sets. Advances in Mathematics of Communications, 2015, 9 (1) : 5562. doi: 10.3934/amc.2015.9.55 
[11] 
Ferruh Özbudak, Eda Tekin. Correlation distribution of a sequence family generalizing some sequences of Trachtenberg. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020087 
[12] 
Hua Liang, Wenbing Chen, Jinquan Luo, Yuansheng Tang. A new nonbinary sequence family with low correlation and large size. Advances in Mathematics of Communications, 2017, 11 (4) : 671691. doi: 10.3934/amc.2017049 
[13] 
Richard Hofer, Arne Winterhof. On the arithmetic autocorrelation of the Legendre sequence. Advances in Mathematics of Communications, 2017, 11 (1) : 237244. doi: 10.3934/amc.2017015 
[14] 
Hongyu Han, Sheng Zhang. New classes of strictly optimal low hit zone frequency hopping sequence sets. Advances in Mathematics of Communications, 2020, 14 (4) : 579589. doi: 10.3934/amc.2020031 
[15] 
Wenjuan Yin, Can Xiang, FangWei Fu. Two constructions of lowhitzone frequencyhopping sequence sets. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020110 
[16] 
Chunlei Xie, Yujuan Sun. Construction and assignment of orthogonal sequences and zero correlation zone sequences for applications in CDMA systems. Advances in Mathematics of Communications, 2020, 14 (1) : 19. doi: 10.3934/amc.2020001 
[17] 
Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with threelevel crosscorrelation. Advances in Mathematics of Communications, 2015, 9 (1) : 117128. doi: 10.3934/amc.2015.9.117 
[18] 
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 
[19] 
Walter Briec, Bernardin Solonandrasana. Some remarks on a successive projection sequence. Journal of Industrial & Management Optimization, 2006, 2 (4) : 451466. doi: 10.3934/jimo.2006.2.451 
[20] 
Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The crosscorrelation distribution of a $p$ary $m$sequence of period $p^{2k}1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409424. doi: 10.3934/amc.2013.7.409 
2019 Impact Factor: 0.734
Tools
Metrics
Other articles
by authors
[Back to Top]