\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

An approach to the performance of SPC product codes on the erasure channel

Abstract Related Papers Cited by
  • Product codes can be used to correct errors or recover erasures. In this work we consider the simplest form of a product code, this is, the single parity check (SPC) product code. This code has a minimum distance of four and is thus guaranteed to recover all single, double, and triple erasure patterns. The code is actually capable of recovering a higher number of erasure patterns. We count the number of uncorrectable erasure patterns of size $n \times n $ with $t$ erasures, for $t=8$, $2n-3$, $2n-2$ and $ 2n-1$, using the relation between erasure patterns and bipartite graphs.
    Mathematics Subject Classification: Primary: 14G50; Secondary: 97K30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Z. Abu-Sbeih, On the number of spanning trees of $K_n$ and $K_{m,n}$, Discrete Math., 84 (1990), 205-207.doi: 10.1016/0012-365X(90)90377-T.

    [2]

    R. Amutha, K. Verraraghavan and S. K. Srivatsa, Recoverability study of SPC product codes under erasure decoding, Inf. Sci., 173 (2005), 169-179.doi: 10.1016/j.ins.2004.07.011.

    [3]

    R. Diestel, Graph Theory, Springer-Verlag, New York, 2000.doi: 10.1007/b100033.

    [4]

    P. Elias, Coding for noisy channels, IRE International Convention Record, pt. 4, 1955, 37-46.

    [5]

    P. Giblin, Graphs, Surfaces and Homology, 3rd edition, Cambridge Univ. Press, New York, 2010.doi: 10.1017/CBO9780511779534.

    [6]

    N. Hartsfield and J. S. Werth, Spanning trees of the complete bipartite graph, in Topics in Combinatorics and Graph Theory (eds. R. Bodendieck and R. Henn), Physica-Verlag, 1990, 339-346.

    [7]

    M. A. Kousa, A novel approach for evaluating the performance of SPC product codes under erasure decoding, IEEE Trans. Commun., 50 (2002), 7-11.

    [8]

    M. A. Kousa and A. H. Mugaibel, Cell loss recovery using two-dimensional erasure correction for ATM networks, in Proc. 7th Int. Conf. Telecommun. Syst., 1999, 85-89.

    [9]

    A. Muqaibel, Enhanced upper bound for erasure recovery in SPC product codes, ETRI J., 31 (2009), 518-524.

    [10]

    D. M. Rankin and T. A. Gulliver, Single parity check product codes, IEEE Trans. Commun., 49 (2001), 1354-1362.

    [11]

    J. M. Simmons and R. G. Gallager, Design of error detection scheme for class C service in ATM, IEEE/ACM Trans. Netw., 2 (1994), 80-88.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(184) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return