February  2016, 10(1): 113-130. doi: 10.3934/amc.2016.10.113

On applications of orbit codes to storage

1. 

Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

Received  December 2014 Revised  July 2015 Published  March 2016

We consider orbit codes, namely subspace codes obtained from orbits of the action of subgroups of $GL_n(\mathbb{F}_q)$ on $m$-dimensional subspaces of $\mathbb{F}_q^n$. We discuss their applicability to design storage codes, in particular in the context of collaborative repair: we identify known storage codes that can be interpreted as orbit codes, motivate why orbit codes provide good candidates for storage codes, and translate the storage code parameters into those of the algebraic objects involved. Two simple families of storage orbit codes are given.
Citation: Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113
References:
[1]

H. D. L. Hollmann, Storage codes - coding rate and repair locality,, in Int. Conf. Comp. Netw. Commun., (2013), 830.   Google Scholar

[2]

A.-M. Kermarrec, N. Le Scouarnec and G. Straub, Repairing multiple failures with coordinated and adaptive regenerating codes,, in Int. Symp. Network Coding, (2011), 1.   Google Scholar

[3]

S. Kim, Linear algebra from module theory perspective,, available online at , ().   Google Scholar

[4]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1986).   Google Scholar

[5]

S. Liu and F. Oggier, On storage codes allowing partially collaborative repairs,, in IEEE Int. Symp. Inf. Theory, (2014), 2440.   Google Scholar

[6]

S. Liu and F. Oggier, Two storage code constructions allowing partially collaborative repairs,, in Int. Symp. Inf. Theory Appl., (2014), 378.   Google Scholar

[7]

S. Liu and F. Oggier, On the Design of Storage Orbit Codes,, in Coding Theory and Applications, (2015), 263.   Google Scholar

[8]

F. Oggier, Some constructions of storage codes from Grassmann graphs,, in Proc. Int. Zurich Sem. Commun., (2014).   Google Scholar

[9]

F. Oggier and A. Datta, Self-repairing codes for distributed storage - a projective geometric construction,, in IEEE Inf. Theory Workshop, (2011), 30.   Google Scholar

[10]

F. Oggier and A. Datta, Coding Techniques for Repairability in Networked Distributed Storage Systems,, Now Publishers, (2013).   Google Scholar

[11]

K. V. Rashmi, N. B. Shah, P. V. Kumar and K. Ramchandran, Explicit construction of optimal exact regenerating codes for distributed storage,, in 47th Ann. Allerton Conf. Commun. Control Comput., (2009), 1243.   Google Scholar

[12]

N. Raviv and T. Etzion, Distributed storage systems based on equidistant subspace codes,, preprint, ().   Google Scholar

[13]

K. W. Shum and Y. Hu, Cooperative regenerating codes,, IEEE Trans. Inf. Theory, (2013), 7229.  doi: 10.1109/TIT.2013.2274265.  Google Scholar

[14]

A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes,, IEEE Trans. Inf. Theory, 59 (2013), 7386.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[15]

Z. Wang, I. Tamo and J. Bruck, Long MDS codes for optimal repair bandwidth,, in IEEE Int. Symp. Inf. Theory, (2012), 1182.   Google Scholar

show all references

References:
[1]

H. D. L. Hollmann, Storage codes - coding rate and repair locality,, in Int. Conf. Comp. Netw. Commun., (2013), 830.   Google Scholar

[2]

A.-M. Kermarrec, N. Le Scouarnec and G. Straub, Repairing multiple failures with coordinated and adaptive regenerating codes,, in Int. Symp. Network Coding, (2011), 1.   Google Scholar

[3]

S. Kim, Linear algebra from module theory perspective,, available online at , ().   Google Scholar

[4]

R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications,, Cambridge Univ. Press, (1986).   Google Scholar

[5]

S. Liu and F. Oggier, On storage codes allowing partially collaborative repairs,, in IEEE Int. Symp. Inf. Theory, (2014), 2440.   Google Scholar

[6]

S. Liu and F. Oggier, Two storage code constructions allowing partially collaborative repairs,, in Int. Symp. Inf. Theory Appl., (2014), 378.   Google Scholar

[7]

S. Liu and F. Oggier, On the Design of Storage Orbit Codes,, in Coding Theory and Applications, (2015), 263.   Google Scholar

[8]

F. Oggier, Some constructions of storage codes from Grassmann graphs,, in Proc. Int. Zurich Sem. Commun., (2014).   Google Scholar

[9]

F. Oggier and A. Datta, Self-repairing codes for distributed storage - a projective geometric construction,, in IEEE Inf. Theory Workshop, (2011), 30.   Google Scholar

[10]

F. Oggier and A. Datta, Coding Techniques for Repairability in Networked Distributed Storage Systems,, Now Publishers, (2013).   Google Scholar

[11]

K. V. Rashmi, N. B. Shah, P. V. Kumar and K. Ramchandran, Explicit construction of optimal exact regenerating codes for distributed storage,, in 47th Ann. Allerton Conf. Commun. Control Comput., (2009), 1243.   Google Scholar

[12]

N. Raviv and T. Etzion, Distributed storage systems based on equidistant subspace codes,, preprint, ().   Google Scholar

[13]

K. W. Shum and Y. Hu, Cooperative regenerating codes,, IEEE Trans. Inf. Theory, (2013), 7229.  doi: 10.1109/TIT.2013.2274265.  Google Scholar

[14]

A.-L. Trautmann, F. Manganiello, M. Braun and J. Rosenthal, Cyclic orbit codes,, IEEE Trans. Inf. Theory, 59 (2013), 7386.  doi: 10.1109/TIT.2013.2274266.  Google Scholar

[15]

Z. Wang, I. Tamo and J. Bruck, Long MDS codes for optimal repair bandwidth,, in IEEE Int. Symp. Inf. Theory, (2012), 1182.   Google Scholar

[1]

Gustavo Terra Bastos, Reginaldo Palazzo Júnior, Marinês Guerreiro. Abelian non-cyclic orbit codes and multishot subspace codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020035

[2]

Olof Heden, Martin Hessler. On linear equivalence and Phelps codes. Addendum. Advances in Mathematics of Communications, 2011, 5 (3) : 543-546. doi: 10.3934/amc.2011.5.543

[3]

Heide Gluesing-Luerssen, Carolyn Troha. Construction of subspace codes through linkage. Advances in Mathematics of Communications, 2016, 10 (3) : 525-540. doi: 10.3934/amc.2016023

[4]

Ernst M. Gabidulin, Pierre Loidreau. Properties of subspace subcodes of Gabidulin codes. Advances in Mathematics of Communications, 2008, 2 (2) : 147-157. doi: 10.3934/amc.2008.2.147

[5]

Sergio Estrada, J. R. García-Rozas, Justo Peralta, E. Sánchez-García. Group convolutional codes. Advances in Mathematics of Communications, 2008, 2 (1) : 83-94. doi: 10.3934/amc.2008.2.83

[6]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[7]

Ali Tebbi, Terence Chan, Chi Wan Sung. Linear programming bounds for distributed storage codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020024

[8]

Thomas Honold, Michael Kiermaier, Sascha Kurz. Constructions and bounds for mixed-dimension subspace codes. Advances in Mathematics of Communications, 2016, 10 (3) : 649-682. doi: 10.3934/amc.2016033

[9]

Daniel Heinlein, Sascha Kurz. Binary subspace codes in small ambient spaces. Advances in Mathematics of Communications, 2018, 12 (4) : 817-839. doi: 10.3934/amc.2018048

[10]

Daniel Heinlein, Ferdinand Ihringer. New and updated semidefinite programming bounds for subspace codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020034

[11]

Washiela Fish, Jennifer D. Key, Eric Mwambene. Partial permutation decoding for simplex codes. Advances in Mathematics of Communications, 2012, 6 (4) : 505-516. doi: 10.3934/amc.2012.6.505

[12]

Steven T. Dougherty, Cristina Fernández-Córdoba, Roger Ten-Valls, Bahattin Yildiz. Quaternary group ring codes: Ranks, kernels and self-dual codes. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020023

[13]

Terasan Niyomsataya, Ali Miri, Monica Nevins. Decoding affine reflection group codes with trellises. Advances in Mathematics of Communications, 2012, 6 (4) : 385-400. doi: 10.3934/amc.2012.6.385

[14]

Jamshid Moori, Amin Saeidi. Some designs and codes invariant under the Tits group. Advances in Mathematics of Communications, 2017, 11 (1) : 77-82. doi: 10.3934/amc.2017003

[15]

Cristina García Pillado, Santos González, Victor Markov, Consuelo Martínez, Alexandr Nechaev. New examples of non-abelian group codes. Advances in Mathematics of Communications, 2016, 10 (1) : 1-10. doi: 10.3934/amc.2016.10.1

[16]

Olof Heden. The partial order of perfect codes associated to a perfect code. Advances in Mathematics of Communications, 2007, 1 (4) : 399-412. doi: 10.3934/amc.2007.1.399

[17]

Dean Crnković, Bernardo Gabriel Rodrigues, Sanja Rukavina, Loredana Simčić. Self-orthogonal codes from orbit matrices of 2-designs. Advances in Mathematics of Communications, 2013, 7 (2) : 161-174. doi: 10.3934/amc.2013.7.161

[18]

Ettore Fornasini, Telma Pinho, Raquel Pinto, Paula Rocha. Composition codes. Advances in Mathematics of Communications, 2016, 10 (1) : 163-177. doi: 10.3934/amc.2016.10.163

[19]

Michael Braun. On lattices, binary codes, and network codes. Advances in Mathematics of Communications, 2011, 5 (2) : 225-232. doi: 10.3934/amc.2011.5.225

[20]

Alexis Eduardo Almendras Valdebenito, Andrea Luigi Tironi. On the dual codes of skew constacyclic codes. Advances in Mathematics of Communications, 2018, 12 (4) : 659-679. doi: 10.3934/amc.2018039

2018 Impact Factor: 0.879

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]